
Computer Science from the
Bottom Up
Ian Wienand
A PDF version is available at https://www.bottomupcs.com/csbu.pdf. A EPUB version is available at

https://www.bottomupcs.com/csbu.epub The original souces are available at https://github.com/ianw/

bottomupcs

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons,

559 Nathan Abbott Way, Stanford, California 94305, USA.

Copyright © 2004–2025 Ian Wienand

Table of Contents

Introduction. 13

Welcome . 14

Philosophy . 14

Why from the bottom up? . 14

Enabling Technologies . 14

1. General Unix and Advanced C . 15

1. Everything is a file! . 15

2. Implementing abstraction . 16

2.1. Implementing abstraction with C. 17

2.2. Libraries . 21

3. File Descriptors. 22

3.1. The Shell . 26

3.1.1. Redirection . 26

3.1.2. Implementing pipe . 27

2. Binary and Number Representation . 29

1. Binary — the basis of computing . 29

1.1. Binary Theory . 29

1.1.1. Introduction. 29

Computer Science from the Bottom Up

1

https://www.bottomupcs.com/csbu.pdf
https://www.bottomupcs.com/csbu.epub
https://github.com/ianw/bottomupcs
https://github.com/ianw/bottomupcs
http://creativecommons.org/licenses/by-sa/3.0/
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

1.1.2. The basis of computing. 30

1.1.3. Bits and Bytes . 31

1.1.3.1. ASCII . 31

1.1.3.2. Parity . 32

1.1.3.3. 16, 32 and 64 bit computers. 32

1.1.3.4. Kilo, Mega and Giga Bytes . 32

1.1.3.5. Kilo, Mega and Giga Bits . 33

1.1.3.6. Conversion . 34

1.1.4. Boolean Operations. 35

1.1.4.1. Not . 35

1.1.4.2. And. 35

1.1.4.3. Or . 36

1.1.4.4. Exclusive Or (xor) . 36

1.1.5. How computers use boolean operations . 36

1.1.6. Working with binary in C . 37

1.2. Hexadecimal . 37

1.3. Practical Implications. 39

1.3.1. Use of binary in code . 39

1.3.2. Masking and Flags . 39

1.3.2.1. Masking . 39

1.3.2.2. Flags. 41

2. Types and Number Representation . 43

2.1. C Standards . 43

2.1.1. GNU C . 44

2.2. Types . 44

2.2.1. 64 bit . 46

2.2.2. Type qualifiers . 48

2.2.3. Standard Types . 48

2.2.4. Types in action . 49

2.3. Number Representation . 52

2.3.1. Negative Values . 52

2.3.1.1. Sign Bit . 52

2.3.1.2. One's Complement . 52

2.3.1.3. Two's Complement. 53

2.3.1.3.1. Sign-extension. 54

2.3.2. Floating Point . 54

Computer Science from the Bottom Up

2

2.3.2.1. Normalised Values . 58

2.3.2.1.1. Normalisation Tricks. 59

2.3.2.2. Bringing it together . 61

3. Computer Architecture . 67

1. The CPU . 68

1.1. Branching. 69

1.2. Cycles. 69

1.3. Fetch, Decode, Execute, Store . 69

1.3.1. Looking inside a CPU. 70

1.3.2. Pipelining . 71

1.3.2.1. Branch Prediction. 72

1.3.3. Reordering. 72

1.4. CISC v RISC . 73

1.4.1. EPIC . 74

2. Memory. 75

2.1. Memory Hierarchy. 75

2.2. Cache in depth . 76

2.2.1. Cache Addressing . 79

3. Peripherals and buses . 80

3.1. Peripheral Bus concepts . 81

3.1.1. Interrupts . 81

3.1.1.1. Saving state . 82

3.1.1.2. Interrupts v traps and exceptions . 82

3.1.1.3. Types of interrupts . 82

3.1.1.4. Non-maskable interrupts . 83

3.1.2. IO Space . 83

3.2. DMA . 84

3.3. Other Buses . 84

3.3.1. USB. 84

4. Small to big systems . 86

4.1. Symmetric Multi-Processing . 86

4.1.1. Cache Coherency . 86

4.1.1.1. Cache exclusivity in SMP systems . 88

4.1.2. Hyperthreading . 88

4.1.3. Multi Core. 89

4.2. Clusters . 89

Computer Science from the Bottom Up

3

4.3. Non-Uniform Memory Access . 90

4.3.1. NUMA Machine Layout . 90

4.3.2. Cache Coherency . 92

4.3.3. NUMA Applications. 93

4.4. Memory ordering, locking and atomic operations. 93

4.4.1. Processors and memory models . 97

4.4.2. Locking . 97

4.4.2.1. Locking difficulties . 97

4.4.2.2. Locking strategies . 98

4.4.3. Atomic Operations . 99

4. The Operating System. 99

1. The role of the operating system. 99

1.1. Abstraction of hardware. 99

1.2. Multitasking . 99

1.3. Standardised Interfaces . 100

1.4. Security . 100

1.5. Performance . 101

2. Operating System Organisation . 101

2.1. The Kernel . 102

2.1.1. Monolithic v Microkernels . 103

2.1.1.1. Modules . 104

2.1.2. Virtualisation. 104

2.1.2.1. Covert Channels. 107

2.2. Userspace . 107

3. System Calls . 108

3.1. Overview . 108

3.1.1. System call numbers . 108

3.1.2. Arguments. 108

3.1.3. The trap . 108

3.1.4. libc. 109

3.2. Analysing a system call . 109

3.2.1. PowerPC . 110

3.2.2. x86 system calls . 118

4. Privileges. 123

4.1. Hardware . 123

4.1.1. Privilege Levels . 124

Computer Science from the Bottom Up

4

4.1.1.1. 386 protection model . 125

4.1.1.2. Raising Privilege . 125

4.1.1.3. Fast System Calls. 125

4.2. Other ways of communicating with the kernel . 129

4.2.1. ioctl . 129

4.3. File Systems . 129

5. The Process . 129

1. What is a process?. 129

2. Elements of a process . 130

2.1. Process ID . 130

2.2. Memory . 130

2.2.1. Code and Data. 131

2.2.2. The Stack . 131

2.2.3. The Heap. 135

2.2.4. Memory Layout . 137

2.3. File Descriptors . 138

2.4. Registers. 138

2.5. Kernel State . 138

2.5.1. Process State . 138

2.5.2. Priority . 139

2.5.3. Statistics . 139

3. Process Hierarchy . 139

4. Fork and Exec . 140

4.1. Fork . 140

4.2. Exec . 140

4.3. How Linux actually handles fork and exec . 141

4.3.1. clone . 141

4.3.1.1. Threads. 141

4.3.1.2. Copy on write. 143

4.4. The init process . 144

4.4.1. Zombie example . 144

5. Context Switching. 146

6. Scheduling. 146

6.1. Preemptive v co-operative scheduling . 147

6.2. Realtime . 147

6.3. Nice value . 148

Computer Science from the Bottom Up

5

6.4. A brief look at the Linux Scheduler. 148

7. The Shell . 149

8. Signals. 150

8.1. Example . 151

6. Virtual Memory. 154

1. What Virtual Memory isn't . 154

2. What virtual memory is . 154

2.1. 64 bit computing . 154

2.1.1. Canonical Addresses. 155

2.2. Using the address space . 156

3. Pages . 157

4. Physical Memory . 158

5. Pages + Frames = Page Tables . 158

6. Virtual Addresses . 158

6.1. Page . 159

6.2. Offset . 159

6.3. Virtual Address Translation . 159

7. Consequences of virtual addresses, pages and page tables. 161

7.1. Individual address spaces. 161

7.2. Protection . 161

7.3. Swap. 162

7.3.1. mmap. 162

7.4. Sharing memory. 163

7.5. Disk Cache . 163

7.5.1. Page Cache . 163

8. Hardware Support . 164

8.1. Physical v Virtual Mode. 164

8.1.1. Issues with segmentation . 164

8.2. The TLB. 165

8.2.1. Page Faults . 166

8.2.1.1. Finding the page table . 166

8.2.2. Other page related faults . 166

8.3. TLB Management . 167

8.3.1. Flushing the TLB . 167

8.3.2. Hardware v Software loaded TLB . 168

9. Linux Specifics . 169

Computer Science from the Bottom Up

6

9.1. Address Space Layout . 169

9.2. Three Level Page Table . 170

10. Hardware support for virtual memory . 172

10.1. x86-64 . 172

10.2. Itanium . 172

10.2.1. Address spaces . 173

10.2.1.1. Protection Keys . 175

10.2.2. Itanium Hardware Page-Table Walker . 175

10.2.2.1. Virtual Linear Page-Table . 175

10.2.2.2. Virtual Hash Table . 180

7. The Toolchain . 181

1. Compiled v Interpreted Programs. 181

1.1. Compiled Programs . 181

1.2. Interpreted programs . 181

1.2.1. Virtual Machines. 182

2. Building an executable . 182

3. Compiling . 182

3.1. The process of compiling. 182

3.1.1. C code . 183

3.2. Syntax . 183

3.3. Assembly Generation. 183

3.3.1. Alignment . 184

3.3.1.1. Structure Padding. 185

3.3.1.2. Cache line alignment . 187

3.3.1.3. Space - Speed Trade off . 188

3.3.1.4. Making Assumptions . 188

3.3.1.5. C Idioms with alignment . 190

3.4. Optimisation. 191

3.4.1. General Optimising. 192

3.4.2. Unrolling loops . 192

3.4.3. Inlining functions . 192

3.4.4. Branch Prediction . 192

4. Assembler . 193

5. Linker . 193

5.1. Symbols . 194

5.1.1. Symbols . 194

Computer Science from the Bottom Up

7

5.1.2. Symbol Visibility . 194

5.2. The linking process . 195

6. A practical example . 195

6.1. Compiling . 197

6.2. Assembly . 200

6.3. Linking. 203

6.4. The Executable. 205

8. Behind the process . 213

1. Review of executable files . 213

2. Representing executable files . 214

2.1. Three Standard Sections . 214

2.2. Binary Format . 214

2.3. Binary Format History . 215

2.3.1. a.out. 215

2.3.2. COFF . 215

3. ELF . 215

3.1. ELF File Header. 216

3.2. Symbols and Relocations. 221

3.3. Sections and Segments. 221

3.3.1. Segments . 221

3.3.2. Sections . 223

3.3.3. Sections and Segments together . 229

4. ELF Executables . 231

5. Libraries . 234

5.1. Static Libraries . 234

5.1.1. Inside static libraries . 235

5.1.2. Static Linking Drawbacks. 238

5.2. Shared Libraries . 238

6. Extending ELF concepts . 238

6.1. Debugging . 238

6.1.1. Symbols and Debugging Information. 240

6.1.2. Inside coredumps . 241

6.2. Custom sections . 248

6.3. Linker Scripts. 254

7. ABIs . 256

7.1. Byte Order . 257

Computer Science from the Bottom Up

8

7.2. Calling Conventions. 257

7.2.1. Passing parameters . 257

7.2.2. Function Descriptors. 257

8. Starting a process . 258

8.1. Kernel communication to programs. 258

8.1.1. Kernel Library. 259

8.2. Starting the program . 259

9. Dynamic Linking . 270

1. Code Sharing. 270

1.1. Dynamic Library Details . 271

1.2. Including libraries in an executable . 271

1.2.1. Compilation. 271

1.2.2. Linking . 271

2. The Dynamic Linker . 273

2.1. Relocations. 275

2.1.1. Relocations in action. 277

2.2. Position Independence . 278

3. Global Offset Tables . 278

3.1. The Global Offset Table. 279

3.1.1. The GOT in action . 281

4. Libraries . 285

4.1. The Procedure Lookup Table. 285

4.1.1. The PLT in action . 286

4.1.2. Summary . 302

5. Working with libraries and the linker . 302

5.1. Library versions . 303

5.1.1. sonames . 303

5.1.1.1. How the dynamic linker looks up libraries . 305

5.2. Finding symbols. 306

5.2.1. Dynamic Symbol Table. 306

5.2.2. Symbol Binding . 308

5.2.2.1. Overriding symbols . 311

5.2.2.1.1. Weak symbols over time . 313

5.2.2.2. Specifying binding order . 313

5.2.2.3. Symbol Versioning. 314

Glossary . 318

Computer Science from the Bottom Up

9

List of Figures

1.1. Abstraction. 16

1.2. Default Unix Files . 23

1.3. Abstraction. 24

1.4. A pipe in action . 28

2.1. Masking . 40

2.2. Types . 45

3.1. The CPU. 68

3.2. Inside the CPU . 70

3.3. Reorder buffer example . 72

3.4. Cache Associativity . 77

3.5. Cache tags . 79

3.6. Overview of handling an interrupt . 81

3.7. Overview of a UHCI controller operation . 85

3.8. A Hypercube . 91

3.9. Acquire and Release semantics . 96

4.1. The Operating System . 102

4.2. The Operating System . 105

4.3. Rings . 124

4.4. x86 Segmentation Addressing . 126

4.5. x86 segments . 127

5.1. The Elements of a Process . 130

5.2. The Stack . 132

5.3. Process memory layout . 137

5.4. Threads. 142

5.5. The O(1) scheduler . 148

6.1. Illustration of canonical addresses . 156

6.2. Virtual memory pages . 157

6.3. Virtual Address Translation . 160

6.4. Segmentation . 165

6.5. Linux address space layout . 170

6.6. Linux Three Level Page Table . 171

6.7. Illustration Itanium regions and protection keys . 173

6.8. Illustration of Itanium TLB translation . 174

6.9. Illustration of a hierarchical page-table . 177

Computer Science from the Bottom Up

10

6.10. Itanium short-format VHPT implementation. 178

6.11. Itanium PTE entry formats. 179

7.1. Alignment . 184

7.2. Alignment . 187

8.1. ELF Overview . 216

9.1. Memory access via the GOT . 280

9.2. sonames . 305

List of Tables

1.1. Standard Files Provided by Unix . 22

1.2. Standard Shell Redirection Facilities. 27

2.1. Binary. 29

2.2. 203 in base 10 . 29

2.3. 203 in base 2 . 30

2.4. Base 2 and 10 factors related to bytes . 33

2.5. Convert 203 to binary . 34

2.6. Truth table for not . 35

2.7. Truth table for and . 35

2.8. Truth table for or . 36

2.9. Truth table for xor . 36

2.10. Boolean operations in C. 37

2.11. Hexadecimal, Binary and Decimal . 38

2.12. Convert 203 to hexadecimal . 39

2.13. Standard Integer Types and Sizes . 46

2.14. Standard Scalar Types and Sizes . 47

2.15. One's Complement Addition . 53

2.16. Two's Complement Addition . 53

2.17. IEEE Floating Point . 55

2.18. Scientific Notation for 1.98765x10^6 . 55

2.19. Significands in binary . 56

2.20. Example of normalising 0.375. 58

3.1. Memory Hierarchy. 75

9.1. Relocation Example . 275

9.2. ELF symbol fields . 307

List of Examples

Computer Science from the Bottom Up

11

1.1. Abstraction with function pointers. 17

1.2. Abstraction in include/linux/virtio.h . 20

1.3. Example of major and minor numbers. 25

2.1. Using masks . 40

2.2. Using flags . 41

2.3. Example of warnings when types are not matched . 49

2.4. Floats versus Doubles . 56

2.5. Program to find first set bit . 59

2.6. Examining Floats . 61

2.7. Analysis of 8.45 . 67

3.1. Memory Ordering . 94

4.1. getpid() example . 109

4.2. PowerPC system call example . 111

4.3. x86 system call example . 118

5.1. Stack pointer example . 134

5.2. pstree example. 139

5.3. Zombie example process . 144

5.4. Signals Example. 151

7.1. Struct padding example . 185

7.2. Stack alignment example . 188

7.3. Page alignment manipulations . 190

7.4. Hello World . 196

7.5. Function Example . 196

7.6. Compilation Example . 197

7.7. Assembly Example . 200

7.8. Readelf Example . 201

7.9. Linking Example . 204

7.10. Executable Example. 205

8.1. The ELF Header. 216

8.2. The ELF Header, as shown by readelf . 217

8.3. Inspecting the ELF magic number. 219

8.4. Investigating the entry point . 219

8.5. The Program Header . 221

8.6. Sections . 223

8.7. Sections . 224

8.8. Sections readelf output . 225

Computer Science from the Bottom Up

12

8.9. Sections and Segments. 229

8.10. Segments of an executable file . 232

8.11. Creating and using a static library . 235

8.12. Example of creating a core dump and using it with gdb . 239

8.13. Example of stripping debugging information into separate files using objcopy 241

8.14. Example of using readelf and eu-readelf to examine a coredump. 242

8.15. Example of modinfo output . 248

8.16. Putting module info into sections . 251

8.17. Module symbols in .modinfo sections . 253

8.18. The default linker script . 255

8.19. Disassembley of program startup. 259

8.20. Constructors and Destructors. 263

9.1. Specifying Dynamic Libraries . 272

9.2. Looking at dynamic libraries . 273

9.3. Checking the program interpreter . 274

9.4. Relocation as defined by ELF . 275

9.5. Specifying Dynamic Libraries . 277

9.6. Using the GOT. 281

9.7. Relocations against the GOT . 285

9.8. Hello World PLT example . 286

9.9. Hello world main(). 288

9.10. Hello world sections . 289

9.11. Hello world PLT. 293

9.12. Hello world GOT . 295

9.13. Dynamic Segment . 297

9.14. Code in the dynamic linker for setting up special values (from libc sysdeps/ia64/dl-ma-

chine.h) . 299

9.15. Symbol definition from ELF . 307

9.16. Examples of symbol bindings . 308

9.17. Example of LD_PRELOAD . 311

9.18. Example of symbol versioning . 314

Introduction

Computer Science from the Bottom Up

13

Welcome

Welcome to Computer Science from the Bottom Up

Philosophy
In a nutshell, what you are reading is intended to be a shop class for computer science. Young comput-

er science students are taught to "drive" the computer; but where do you go to learn what is under the

hood? Trying to understand the operating system is unfortunately not as easy as just opening the bon-

net. The current Linux kernel runs into the millions of lines of code, add to that the other critical parts

of a modern operating system (the compiler, assembler and system libraries) and your code base be-

comes unimaginable. Further still, add a University level operating systems course (or four), some

good reference manuals, two or three years of C experience and, just maybe, you might be able to fig-

ure out where to start looking to make sense of it all.

To keep with the car analogy, the prospective student is starting out trying to work on a Formula One

engine without ever knowing how a two stroke motor operates. During their shop class the student

should pull apart, twist, turn and put back together that two stroke motor, and consequentially have a

pretty good framework for understanding just how the Formula One engine works. Nobody will ex-

pect them to be a Formula One engineer, but they are well on their way!

Why from the bottom up?
Not everyone wants to attend shop class. Most people only want to drive the car, not know how to

build one from scratch. Obviously any general computing curriculum has to take this into account else

it won't be relevant to its students. So computer science is taught from the "top down"; applications,

high level programming, software design and development theory, possibly data structures. Students

will probably be exposed to binary, hopefully binary logic, possibly even some low level concepts

such as registers, opcodes and the like at a superficial level.

This book aims to move in completely the opposite direction, working from operating systems funda-

mentals through to how those applications are complied and executed.

Enabling Technologies
This book is only possible thanks to the development of Open Source technologies. Before Linux it

was like taking a shop course with a car that had its bonnet welded shut; today we are in a position to

Computer Science from the Bottom Up

14

open that bonnet, poke around with the insides and, better still, take that engine and use it to do what-

ever we want.

Chapter 1. General Unix and Advanced C

1. Everything is a file!
An often-quoted tenet of UNIX-like systems such as Linux or BSD is everything is a file.

Imagine a file in the context of something familiar like a word processor. There are two fundamental

operations we could use on this imaginary word processing file:

1. Read it (existing saved data from the word processor).

2. Write to it (new data from the user).

Consider some of the common things attached to a computer and how they relate to our fundamental

file operations:

1. The screen

2. The keyboard

3. A printer

4. A CD-ROM

The screen and printer are both like a write-only file, but instead of being stored as bits on a disk the

information is displayed as dots on a screen or lines on a page. The keyboard is like a read only file,

with the data coming from keystrokes provided by the user. The CD-ROM is similar, but rather than

randomly coming from the user the data is stored directly on the disk.

Thus the concept of a file is a good abstraction of either a sink for, or source of, data. As such it is an

excellent abstraction of all the devices one might attach to the computer. This realisation is the great

power of UNIX and is evident across the design of the entire platform. It is one of the fundamental

roles of the operating system to provide this abstraction of the hardware to the programmer.

It is probably not too much of a stretch to say abstraction is the primary concept that underpins all

modern computing. No one person can understand everything from designing a modern user-interface

Computer Science from the Bottom Up

15

to the internal workings of a modern CPU, much less build it all themselves. To programmers, abstrac-

tions are the common language that allows us to collaborate and invent.

Learning to navigate across abstractions gives one greater insight into how to use the abstractions in

the best and most innovative ways. In this book, we are concerned with abstractions at the lowest lay-

ers; between applications and the operating system and the operating system and hardware. Many

more layers lie above this, each worthy of their own books. As these chapters progress, you will hope-

fully gain some insight into the abstractions presented by a modern operating system.

Spot the difference?
Figure 1.1. Abstraction

2. Implementing abstraction

In general, abstraction is implemented by what is generically termed an Application Programming In-

terface (API). API is a somewhat nebulous term that means different things in the context of various

programming endeavours. Fundamentally, a programmer designs a set of functions and documents

their interface and functionality with the principle that the actual implementation providing the API is

opaque.

For example, many large web applications provide an API accessible via HTTP. Accessing data via

this method surely triggers many complicated series of remote procedure calls, database queries and

data transfers, all of which are opaque to the end user who simply receives the contracted data.

Those familiar with object-oriented languages such as Java, Python or C++ would be familiar with the

abstraction provided by classes. Methods provide the interface to the class, but abstract the implemen-

tation.

Computer Science from the Bottom Up

16

2.1. Implementing abstraction with C
A common method used in the Linux kernel and other large C code bases, which lack a built-in con-

cept of object-orientation, is function pointers. Learning to read this idiom is key to navigating most

large C code bases. By understanding how to read the abstractions provided within the code an under-

standing of internal API designs can be built.

1 #include <stdio.h>

/* The API to implement */

struct greet_api

5 {

int (*say_hello)(char *name);

int (*say_goodbye)(void);

};

10 /* Our implementation of the hello function */

int say_hello_fn(char *name)

{

printf("Hello %s\n", name);

return 0;

15 }

Computer Science from the Bottom Up

17

/* Our implementation of the goodbye function */

int say_goodbye_fn(void)

{

20 printf("Goodbye\n");

return 0;

}

/* A struct implementing the API */

25 struct greet_api greet_api =

{

.say_hello = say_hello_fn,

.say_goodbye = say_goodbye_fn

};

30

/* main() doesn't need to know anything about how the

* say_hello/goodbye works, it just knows that it does */

int main(int argc, char *argv[])

{

35 greet_api.say_hello(argv[1]);

greet_api.say_goodbye();

Computer Science from the Bottom Up

18

printf("%p, %p, %p\n", greet_api.say_hello, say_hello_fn, &say_hello_fn);

40 exit(0);

}

Example 1.1. Abstraction with function pointers

Code such as the above is the simplest example of constructs used repeatedly throughout the Linux

Kernel and other C programs. Let's have a look at some specific elements.

We start out with a structure that defines the API (struct greet_api). The functions whose names

are encased in parentheses with a pointer marker describe a function pointer1. The function pointer de-

scribes the prototype of the function it must point to; pointing it at a function without the correct return

type or parameters will generate a compiler warning at least; if left in code will likely lead to incorrect

operation or crashes.

We then have our implementation of the API. Often for more complex functionality you will see an id-

iom where API implementation functions will only be a wrapper around other functions that are con-

ventionally prepended with one or or two underscores2 (i.e. say_hello_fn() would call another

function _say_hello_function()). This has several uses; generally it relates to having simpler and

smaller parts of the API (marshalling or checking arguments, for example) separate from more com-

plex implementation, which often eases the path to significant changes in the internal workings whilst

ensuring the API remains constant. Our implementation is very simple, however, and doesn't even

need its own support functions. In various projects, single-, double- or even triple-underscore function

prefixes will mean different things, but universally it is a visual warning that the function is not sup-

posed to be called directly from "beyond" the API.

Second to last, we fill out the function pointers in struct greet_api greet_api . The name of the

function is a pointer; therefore there is no need to take the address of the function (i.e. &say_hel-

1. Often you will see that the names of the parameters are omitted, and only the type of the parameter

is specified. This allows the implementer to specify their own parameter names avoiding warnings

from the compiler.

2. A double-underscore function __foo may conversationally be referred to as "dunder foo".

Computer Science from the Bottom Up

19

lo_fn).

Finally we can call the API functions through the structure in main .

You will see this idiom constantly when navigating the source code. The tiny example below is taken

from include/linux/virtio.h in the Linux kernel source to illustrate:

1 /**

* virtio_driver - operations for a virtio I/O driver

* @driver: underlying device driver (populate name and owner).

* @id_table: the ids serviced by this driver.

5 * @feature_table: an array of feature numbers supported by this driver.

* @feature_table_size: number of entries in the feature table array.

* @probe: the function to call when a device is found. Returns 0 or -errno.

* @remove: the function to call when a device is removed.

* @config_changed: optional function to call when the device configuration

10 * changes; may be called in interrupt context.

*/

struct virtio_driver {

struct device_driver driver;

const struct virtio_device_id *id_table;

15 const unsigned int *feature_table;

unsigned int feature_table_size;

Computer Science from the Bottom Up

20

int (*probe)(struct virtio_device *dev);

void (*scan)(struct virtio_device *dev);

void (*remove)(struct virtio_device *dev);

20 void (*config_changed)(struct virtio_device *dev);

#ifdef CONFIG_PM

int (*freeze)(struct virtio_device *dev);

int (*restore)(struct virtio_device *dev);

#endif

25 };

Example 1.2. Abstraction in include/linux/virtio.h

It's only necessary to vaguely understand that this structure is a description of a virtual I/O device. We

can see the user of this API (the device driver author) is expected to provide a number of functions

that will be called under various conditions during system operation (when probing for new hardware,

when hardware is removed, etc.). It also contains a range of data; structures which should be filled

with relevant data.

Starting with descriptors like this is usually the easiest way to begin understanding the various layers

of kernel code.

2.2. Libraries
Libraries have two roles which illustrate abstraction.

• Allow programmers to reuse commonly accessed code.

• Act as a black box implementing functionality for the programmer.

For example, a library implementing access to the raw data in JPEG files has both the advantage that

the many programs that wish to access image files can all use the same library and the programmers

building these programs do not need to worry about the exact details of the JPEG file format, but can

Computer Science from the Bottom Up

21

concentrate their efforts on what their program wants to do with the image.

The standard library of a UNIX platform is generically referred to as libc . It provides the basic in-

terface to the system: fundamental calls such as read() , write() and printf() . This API is de-

scribed in its entirety by a specification called POSIX . It is freely available online and describes the

many calls that make up the standard UNIX API.

Most UNIX platforms broadly follow the POSIX standard, though often differ in small but sometimes

important ways (hence the complexity of the various GNU autotools, which often try to abstract away

these differences for you). Linux has many interfaces that are not specified by POSIX; writing applica-

tions that use them exclusively will make your application less portable.

Libraries are a fundamental abstraction with many details. Later chapters will describe how libraries

work in much greater detail.

3. File Descriptors

One of the first things a UNIX programmer learns is that every running program starts with three files

already opened:

Table 1.1. Standard Files Provided by Unix

Descriptive Name Short Name File Number Description

Standard In stdin 0 Input from the keyboard

Standard Out stdout 1 Output to the console

Standard Error stderr 2 Error output to the console

Computer Science from the Bottom Up

22

Standard Input
Standard Output
Standard Error

Default Unix Files

Figure 1.2. Default Unix Files

This raises the question of what an open file represents. The value returned by an open call is termed

a file descriptor and is essentially an index into an array of open files kept by the kernel.

Computer Science from the Bottom Up

23

0

1

2

3

MAX_FD

Device Layer

/dev/input

/dev/tty

/dev/sr0

Opening the file
associates a descriptor
with the associated device

int fd = open("/dev/sr0");

with the kernel
which gives them a file

Devices register

int ret = read(fd, &input, count);

File Descriptors

12

Further references
to the descriptor
are routed to the device

3

File descriptors are an index into a file descriptor table stored by the kernel. The kernel creates a file de-

scriptor in response to an open call and associates the file descriptor with some abstraction of an un-

derlying file-like object, be that an actual hardware device, or a file system or something else entirely.

Consequently a process's read or write calls that reference that file descriptor are routed to the cor-

rect place by the kernel to ultimately do something useful.

Computer Science from the Bottom Up

24

Figure 1.3. Abstraction

In short, the file descriptor is the gateway into the kernel's abstractions of underlying hardware. An

overall view of the abstraction for physical-devices is shown in Figure 1.3, “Abstraction”.

Starting at the lowest level, the operating system requires a programmer to create a device driver to be

able to communicate with a hardware device. This device driver is written to an API provided by the

kernel just like in Example 1.2, “Abstraction in include/linux/virtio.h ”; the device driver will

provide a range of functions which are called by the kernel in response to various requirements. In the

simplified example above, we can see the drivers provide a read and write function that will be

called in response to the analogous operations on the file descriptor. The device driver knows how to

convert these generic requests into specific requests or commands for a particular device.

To provide the abstraction to user-space, the kernel provides a file-interface via what is generically

termed a device layer. Physical devices on the host are represented by a file in a special file system

such as /dev . In UNIX-like systems, so-called device-nodes have what are termed a major and a mi-

nor number, which allow the kernel to associate particular nodes with their underlying driver. These

can be identified via ls as illustrated in Example 1.3, “Example of major and minor numbers”.

$ ls -l /dev/null /dev/zero /dev/tty

crw-rw-rw- 1 root root 1, 3 Aug 26 13:12 /dev/null

crw-rw-rw- 1 root root 5, 0 Sep 2 15:06 /dev/tty

crw-rw-rw- 1 root root 1, 5 Aug 26 13:12 /dev/zero

Example 1.3. Example of major and minor numbers

This brings us to the file descriptor, which is the handle user-space uses to talk to the underlying de-

vice. In a broad sense, what happens when a file is open ed is that the kernel is using the path infor-

mation to map the file descriptor with something that provides an appropriate read and write , etc.,

API. When this open is for a device (/dev/sr0 above), the major and minor number of the opened

device node provides the information the kernel needs to find the correct device driver and complete

the mapping. The kernel will then know how to route further calls such as read to the underlying

functions provided by the device driver.

Computer Science from the Bottom Up

25

A non-device file operates similarly, although there are more layers in between. The abstraction here is

the mount point; mounting a file system has the dual purpose of setting up a mapping so the file sys-

tem knows the underlying device that provides the storage and the kernel knows that files opened un-

der that mount-point should be directed to the file system driver. Like device drivers, file systems are

written to a particular generic file system API provided by the kernel.

There are indeed many other layers that complicate the picture in real-life. For example, the kernel

will go to great efforts to cache as much data from disks as possible in otherwise-free memory; this

provides many speed advantages. It will also try to organise device access in the most efficient ways

possible; for example trying to order disk-access to ensure data stored physically close together is re-

trieved together, even if the requests did not arrive in sequential order. Further, many devices are of a

more generic class such as USB or SCSI devices which provide their own abstraction layers to write

to. Thus, rather than writing directly to devices, file systems will go through these many layers. Under-

standing the kernel is to understand how these many APIs interrelate and coexist.

3.1. The Shell
The shell is the gateway to interacting with the operating system. Be it bash , zsh , csh or any of

the many other shells, they all fundamentally have only one major task — to allow you to execute pro-

grams (you will begin to understand how the shell actually does this when we talk about some of the

internals of the operating system later).

But shells do much more than allow you to simply execute a program. They have powerful abilities to

redirect files, allow you to execute multiple programs simultaneously and script complete programs.

These all come back to the everything is a file idiom.

3.1.1. Redirection

Often we do not want the standard file descriptors mentioned in Section 3, “File Descriptors” to point

to their default places. For example, you may wish to capture all the output of a program into a file on

disk or, alternatively, have it read its commands from a file you prepared earlier. Another useful task

might like to pass the output of one program to the input of another. With the operating system, the

shell facilitates all this and more.

Computer Science from the Bottom Up

26

Table 1.2. Standard Shell Redirection Facilities

Name Command Description Example

Redirect

to a file

> file-

name

Take all output from standard out and place it into filename .

Note using >> will append to the file, rather than overwrite it.

ls >

filename

Read

from a

file

< file-

name
Copy all data from the file to the standard input of the program

echo <

filename

Pipe

program1

| pro-

gram2

Take everything from standard out of program1 and pass it to

standard input of program2

ls |

more

3.1.2. Implementing pipe

The implementation of ls | more is just another example of the power of abstraction. What funda-

mentally happens here is that instead of associating the file descriptor for the standard-output with

some sort of underlying device (such as the console, for output to the terminal), the descriptor is point-

ed to an in-memory buffer provided by the kernel commonly termed a pipe . The trick here is that

another process can associate its standard input with the other side of this same buffer and effectively

consume the output of the other process. This is illustrated in Figure 1.4, “A pipe in action”.

Computer Science from the Bottom Up

27

Buffer

File Descriptors

0

1

2

3

MAX_FD

File Descriptors

$ ls | more

write()
read()

Kernel

User

pipe

ls

The pipe is an in-memory buffer that connects two processes together. file descriptors point to the pipe

object, which buffers data sent to it (via a write) to be drained (via a read).

Figure 1.4. A pipe in action

Writes to the pipe are stored by the kernel until a corresponding read from the other side drains the

buffer. This is a very powerful concept and is one of the fundamental forms of inter-process communi-

cation or IPC in UNIX-like operating systems. The pipe allows more than just a data transfer; it can

act as a signaling channel. If a process read s an empty pipe, it will by default block or be put into hi-

bernation until there is some data available (this is discussed in much greater depth in Chapter 5, The

Process). Thus two processes may use a pipe to communicate that some action has been taken just by

writing a byte of data; rather than the actual data being important, the mere presence of any data in the

pipe can signal a message. Say for example one process requests that another print a file — something

that will take some time. The two processes may set up a pipe between themselves where the request-

ing process does a read on the empty pipe; being empty, that call blocks and the process does not

continue. Once the print is done, the other process can write a message into the pipe, which effectively

wakes up the requesting process and signals the work is done.

Computer Science from the Bottom Up

28

Allowing processes to pass data between each other like this springs another common UNIX idiom of

small tools doing one particular thing. Chaining these small tools gives flexibility that a single mono-

lithic tool often can not.

Chapter 2. Binary and Number Represen-
tation

1. Binary — the basis of computing

1.1. Binary Theory

1.1.1. Introduction

Binary is a base-2 number system that uses two mutually exclusive states to represent information. A

binary number is made up of elements called bits where each bit can be in one of the two possible

states. Generally, we represent them with the numerals 1 and 0 . We also talk about them being true

and false. Electrically, the two states might be represented by high and low voltages or some form of

switch turned on or off.

We build binary numbers the same way we build numbers in our traditional base 10 system. However,

instead of a one's column, a 10's column, a 100's column (and so on) we have a one's column, a two's

columns, a four's column, an eight's column, and so on, as illustrated below.

Table 2.1. Binary

2... 26 25 24 23 22 21 20

... 64 32 16 8 4 2 1

For example, to represent the number 203 in base 10, we know we place a 3 in the 1's column, a

0 in the 10's column and a 2 in the 100's column. This is expressed with exponents in the

table below.

Table 2.2. 203 in base 10

102 101 100

2 0 3

Computer Science from the Bottom Up

29

Or, in other words, 2 × 102 + 3 × 100 = 200 + 3 = 203. To represent the same thing in binary, we would

have the following table.

Table 2.3. 203 in base 2

27 26 25 24 23 22 21 20

1 1 0 0 1 0 1 1

That equates to 27 + 26 + 23+21 + 20 = 128 + 64 + 8 + 2 + 1 = 203.

1.1.2. The basis of computing

You may be wondering how a simple number is the basis of all the amazing things a computer can do.

Believe it or not, it is! The processor in your computer has a complex but ultimately limited set of in-

structions it can perform on values such as addition, multiplication, etc. Essentially, each of these in-

structions is assigned a number so that an entire program (add this to that, multiply by that, divide by

this and so on) can be represented by a just a stream of numbers. For example, if the processor knows

operation 2 is addition, then 252 could mean "add 5 and 2 and store the output somewhere". The

reality is of course much more complicated (see Chapter 3, Computer Architecture) but, in a nutshell,

this is what a computer is.

In the days of punch-cards, one could see with their eye the one's and zero's that make up the program

stream by looking at the holes present on the card. Of course this moved to being stored via the polari-

ty of small magnetic particles rather quickly (tapes, disks) and onto the point today that we can carry

unimaginable amounts of data in our pocket.

Translating these numbers to something useful to humans is what makes a computer so useful. For ex-

ample, screens are made up of millions of discrete pixels, each too small for the human eye to distin-

guish but combining to make a complete image. Generally each pixel has a certain red, green and blue

component that makes up its display color. Of course, these values can be represented by numbers,

which of course can be represented by binary! Thus any image can be broken up into millions of indi-

vidual dots, each dot represented by a tuple of three values representing the red, green and blue values

for the pixel. Thus given a long string of such numbers, formatted correctly, the video hardware in

your computer can convert those numbers to electrical signals to turn on and off individual pixels and

hence display an image.

As you read on, we will build up the entire modern computing environment from this basic building

Computer Science from the Bottom Up

30

block; from the bottom-up if you will!

1.1.3. Bits and Bytes

As discussed above, we can essentially choose to represent anything by a number, which can be con-

verted to binary and operated on by the computer. For example, to represent all the letters of the alpha-

bet we would need at least enough different combinations to represent all the lower case letters, the

upper case letters, numbers and punctuation, plus a few extras. Adding this up means we need proba-

bly around 80 different combinations.

If we have two bits, we can represent four possible unique combinations (00 01 10 11). If we have

three bits, we can represent 8 different combinations. In general, with n bits we can represent 2n

unique combinations.

8 bits gives us 28 = 256 unique representations, more than enough for our alphabet combinations.

We call a group of 8 bits a byte. Guess how big a C char variable is? One byte.

1.1.3.1. ASCII

Given that a byte can represent any of the values 0 through 255, anyone could arbitrarily make up a

mapping between characters and numbers. For example, a video card manufacturer could decide that

1 represents A , so when value 1 is sent to the video card it displays a capital 'A' on the screen. A

printer manufacturer might decide for some obscure reason that 1 represented a lower-case 'z', mean-

ing that complex conversions would be required to display and print the same thing.

To avoid this happening, the American Standard Code for Information Interchange or ASCII was in-

vented. This is a 7-bit code, meaning there are 27 or 128 available codes.

The range of codes is divided up into two major parts; the non-printable and the printable. Printable

characters are things like characters (upper and lower case), numbers and punctuation. Non-printable

codes are for control, and do things like make a carriage-return, ring the terminal bell or the special

NULL code which represents nothing at all.

127 unique characters is sufficient for American English, but becomes very restrictive when one wants

to represent characters common in other languages, especially Asian languages which can have many

thousands of unique characters.

To alleviate this, modern systems are moving away from ASCII to Unicode, which can use up to 4

Computer Science from the Bottom Up

31

bytes to represent a character, giving much more room!

1.1.3.2. Parity

ASCII, being only a 7-bit code, leaves one bit of the byte spare. This can be used to implement parity

which is a simple form of error checking. Consider a computer using punch-cards for input, where a

hole represents 1 and no hole represents 0. Any inadvertent covering of a hole will cause an incorrect

value to be read, causing undefined behaviour.

Parity allows a simple check of the bits of a byte to ensure they were read correctly. We can implement

either odd or even parity by using the extra bit as a parity bit.

In odd parity, if the number of 1's in the 7 bits of information is odd, the parity bit is set, otherwise it is

not set. Even parity is the opposite; if the number of 1's is even the parity bit is set to 1.

In this way, the flipping of one bit will case a parity error, which can be detected.

XXX more about error correcting

1.1.3.3. 16, 32 and 64 bit computers

Numbers do not fit into bytes; hopefully your bank balance in dollars will need more range than can fit

into one byte! All most all general-purpose architectures are at least 32 bit computers. This means that

their internal registers are 32-bits (or 4-bytes) wide, and that operations generally work on 32-bit val-

ues. We refer to 4 bytes as a word; this is analogous to language where letters (bits) make up words in

a sentence, except in computing every word has the same size! The size of a C int variable is 32

bits. Modern architectures are 64 bits, which doubles the size the processor works with to 8 bytes.

1.1.3.4. Kilo, Mega and Giga Bytes

Computers deal with a lot of bytes; that's what makes them so powerful! We need a way to talk about

large numbers of bytes, and a natural way is to use the "International System of Units" (SI) prefixes as

used in most other scientific areas. So for example, kilo refers to 103 or 1000 units, as in a kilogram

has 1000 grams.

1000 is a nice round number in base 10, but in binary it is 1111101000 which is not a particularly

"round" number. However, 1024 (or 210) is a round number — (10000000000 — and happens to be

quite close to the base 10 meaning value of "kilo" (1000 as opposed to 1024). Thus 1024 bytes natural-

ly became known as a kilobyte. The next SI unit is "mega" for 106 and the prefixes continue upwards

Computer Science from the Bottom Up

32

by 103 (corresponding to the usual grouping of three digits when writing large numbers). As it hap-

pens, 220 is again close to the SI base 10 definition for mega; 1048576 as opposed to 1000000. In-

creasing the base 2 units by powers of 10 remains functionally close to the SI base 10 value, although

each increasing factor diverges slightly further from the base SI meaning. Thus the SI base-10 units

are "close enough" and have become the commonly used for base 2 values.

Table 2.4. Base 2 and 10 factors related to bytes

Name
Base 2 Fac-

tor
Bytes

Close Base 10

Factor
Base 10 bytes

1 Kilo-

byte
210 1,024 103 1,000

1

Megabyte
220 1,048,576 106 1,000,000

1 Giga-

byte
230 1,073,741,824 109 1,000,000,000

1 Ter-

abyte
240 1,099,511,627,776 1012 1,000,000,000,000

1

Petabyte
250 1,125,899,906,842,624 1015 1,000,000,000,000,000

1 Exabyte 260 1,152,921,504,606,846,976 1018 1,000,000,000,000,000,000

SI units compared in base 2 and base 10

It can be very useful to commit the base 2 factors to memory as an aid to quickly correlate the relation-

ship between number-of-bits and "human" sizes. For example, we can quickly calculate that a 32 bit

computer can address up to four gigabytes of memory by noting that 232 can recombine to 2(2 +

30) or 22 × 230 , which is just 4 × 230 , where we know 230 is a gigabyte. A 64-bit value could

similarly address up to 16 exabytes (24 × 260); you might be interested in working out just how big

a number this is. To get a feel for how big that number is, calculate how long it would take to count to

264 if you incremented once per second.

1.1.3.5. Kilo, Mega and Giga Bits

Apart from the confusion related to the overloading of SI units between binary and base 10, capacities

Computer Science from the Bottom Up

33

will often be quoted in terms of bits rather than bytes. Generally this happens when talking about net-

working or storage devices; you may have noticed that your ADSL connection is described as some-

thing like 1500 kilobits/second. The calculation is simple; multiply by 1000 (for the kilo), divide by 8

to get bytes and then 1024 to get kilobytes (so 1500 kilobits/s=183 kilobytes per second).

The SI standardisation body has recognised these dual uses and has specified unique prefixes for bina-

ry usage. Under the standard 1024 bytes is a kibibyte , short for kilo binary byte (shortened to KiB).

The other prefixes have a similar prefix (Mebibyte, MiB, for example). Tradition largely prevents use

of these terms, but you may seem them in some literature.

1.1.3.6. Conversion

The easiest way to convert between bases is to use a computer, after all, that's what they're good at!

However, it is often useful to know how to do conversions by hand.

The easiest method to convert between bases is repeated division. To convert, repeatedly divide the

quotient by the base, until the quotient is zero, making note of the remainders at each step. Then, write

the remainders in reverse, starting at the bottom and appending to the right each time. An example

should illustrate; since we are converting to binary we use a base of 2.

Table 2.5. Convert 203 to binary

Quotient Remainder

20310 ÷ 2 = 101 1

10110 ÷ 2 = 50 1 ↑

5010 ÷ 2 = 25 0 ↑

2510 ÷ 2 = 12 1 ↑

1210 ÷ 2 = 6 0 ↑

610 ÷ 2 = 3 0 ↑

310 ÷ 2 = 1 1 ↑

110 ÷ 2 = 0 1 ↑

Reading from the bottom and appending to the right each time gives 11001011 , which we saw from

the previous example was 203.

Computer Science from the Bottom Up

34

1.1.4. Boolean Operations

George Boole was a mathematician who discovered a whole area of mathematics called Boolean Alge-

bra. Whilst he made his discoveries in the mid 1800's, his mathematics are the fundamentals of all

computer science. Boolean algebra is a wide ranging topic, we present here only the bare minimum to

get you started.

Boolean operations simply take a particular input and produce a particular output following a rule. For

example, the simplest boolean operation, not simply inverts the value of the input operand. Other

operands usually take two inputs, and produce a single output.

The fundamental Boolean operations used in computer science are easy to remember and listed below.

We represent them below with truth tables; they simply show all possible inputs and outputs. The term

true simply reflects 1 in binary.

1.1.4.1. Not

Usually represented by ! , not simply inverts the value, so 0 becomes 1 and 1 becomes 0

Table 2.6. Truth table for not

Input Output

1 0

0 1

1.1.4.2. And

To remember how the and operation works think of it as "if one input and the other are true, result is

true

Table 2.7. Truth table for and

Input 1 Input 2 Output

0 0 0

1 0 0

0 1 0

1 1 1

Computer Science from the Bottom Up

35

1.1.4.3. Or

To remember how the or operation works think of it as "if one input or the other input is true, the re-

sult is true

Table 2.8. Truth table for or

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

1 1 1

1.1.4.4. Exclusive Or (xor)

Exclusive or, written as xor is a special case of or where the output is true if one, and only one, of

the inputs is true. This operation can surprisingly do many interesting tricks, but you will not see a lot

of it in the kernel.

Table 2.9. Truth table for xor

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

1 1 0

1.1.5. How computers use boolean operations

Believe it or not, essentially everything your computer does comes back to the above operations. For

example, the half adder is a type of circuit made up from boolean operations that can add bits together

(it is called a half adder because it does not handle carry bits). Put more half adders together, and you

will start to build something that can add together long binary numbers. Add some external memory,

and you have a computer.

Electronically, the boolean operations are implemented in gates made by transistors. This is why you

might have heard about transistor counts and things like Moore's Law. The more transistors, the more

Computer Science from the Bottom Up

36

gates, the more things you can add together. To create the modern computer, there are an awful lot of

gates, and an awful lot of transistors. Some of the latest Itanium processors have around 460 million

transistors.

1.1.6. Working with binary in C

In C we have a direct interface to all of the above operations. The following table describes the opera-

tors

Table 2.10. Boolean operations in C

Operation Usage in C

not !

and &

or |

xor ^

We use these operations on variables to modify the bits within the variable. Before we see examples of

this, first we must divert to describe hexadecimal notation.

1.2. Hexadecimal
Hexadecimal refers to a base 16 number system. We use this in computer science for only one reason,

it makes it easy for humans to think about binary numbers. Computers only ever deal in binary and

hexadecimal is simply a shortcut for us humans trying to work with the computer.

So why base 16? Well, the most natural choice is base 10, since we are used to thinking in base 10

from our every day number system. But base 10 does not work well with binary -- to represent 10 dif-

ferent elements in binary, we need four bits. Four bits, however, gives us sixteen possible combina-

tions. So we can either take the very tricky road of trying to convert between base 10 and binary, or

take the easy road and make up a base 16 number system -- hexadecimal!

Hexadecimal uses the standard base 10 numerals, but adds A B C D E F which refer to 10 11 12

13 14 15 (n.b. we start from zero).

Traditionally, any time you see a number prefixed by 0x this will denote a hexadecimal number.

Computer Science from the Bottom Up

37

As mentioned, to represent 16 different patterns in binary, we would need exactly four bits. Therefore,

each hexadecimal numeral represents exactly four bits. You should consider it an exercise to learn the

following table off by heart.

Table 2.11. Hexadecimal, Binary and Decimal

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Of course there is no reason not to continue the pattern (say, assign G to the value 16), but 16 values is

an excellent trade off between the vagaries of human memory and the number of bits used by a com-

puter (occasionally you will also see base 8 used, for example for file permissions under UNIX). We

simply represent larger numbers of bits with more numerals. For example, a sixteen bit variable can be

represented by 0xAB12 , and to find it in binary simply take each individual numeral, convert it as per

the table and join them all together (so 0xAB12 ends up as the 16-bit binary number

1010101100010010). We can use the reverse to convert from binary back to hexadecimal.

Computer Science from the Bottom Up

38

We can also use the same repeated division scheme to change the base of a number. For example, to

find 203 in hexadecimal

Table 2.12. Convert 203 to hexadecimal

Quotient Remainder

20310 ÷ 16 = 12 11 (0xB)

1210 ÷ 16 = 0 12 (0xC) ↑

Hence 203 in hexadecimal is 0xCB .

1.3. Practical Implications

1.3.1. Use of binary in code

Whilst binary is the underlying language of every computer, it is entirely practical to program a com-

puter in high level languages without knowing the first thing about it. However, for the low level code

we are interested in a few fundamental binary principles are used repeatedly.

1.3.2. Masking and Flags

1.3.2.1. Masking

In low level code, it is often important to keep your structures and variables as space efficient as possi-

ble. In some cases, this can involve effectively packing two (generally related) variables into one.

Remember each bit represents two states, so if we know a variable only has, say, 16 possible states it

can be represented by 4 bits (i.e. 24=16 unique values). But the smallest type we can declare in C is 8

bits (a char), so we can either waste four bits, or find some way to use those left over bits.

We can easily do this by the process of masking. This uses the rules of logical operations to extract

values.

The process is illustrated in the figure below. We can keep two separate 4-bit values "inside" a single

8-bit character. We consider the upper four-bits as one value (blue) and the lower 4-bits (red) as anoth-

er. To extract the lower four bits, we set our mask to have the lower-4 bits set to 1 (0x0F). Since the

logical and operation will only set the bit if both bits are 1 , those bits of the mask set to 0 ef-

fectively hide the bits we are not interested in.

Computer Science from the Bottom Up

39

1 1 1 10 0 0 0 0x0F

& & & & & & & &

11 0 1 0 0 0 1

0 0 0 0 0 01 1 0x05

Figure 2.1. Masking

To get the top (blue) four bits, we would invert the mask; in other words, set the top 4 bits to 1 and

the lower 4-bits to 0 . You will note this gives a result of 1010 0000 (or, in hexadecimal 0xA0)

when really we want to consider this as a unique 4-bit value 1010 (0x0A). To get the bits into the

right position we use the right shift operation 4 times, giving a final value of 0000 1010 .

1 #include <stdio.h>

#define LOWER_MASK 0x0F

#define UPPER_MASK 0xF0

5

int main(int argc, char* argv[])

{

/* Two 4-bit values stored in one

* 8-bit variable */

10 char value = 0xA5;

Computer Science from the Bottom Up

40

char lower = value & LOWER_MASK;

char upper = (value & UPPER_MASK) >> 4;

printf("Lower: %x\n", lower);

15 printf("Upper: %x\n", upper);

}

Example 2.1. Using masks

Setting the bits requires the logical or operation. However, rather than using 1 's as the mask, we

use 0 's. You should draw a diagram similar to the above figure and work through setting bits with the

logical or operation.

1.3.2.2. Flags

Often a program will have a large number of variables that only exist as flags to some condition. For

example, a state machine is an algorithm that transitions through a number of different states but may

only be in one at a time. Say it has 8 different states; we could easily declare 8 different variables, one

for each state. But in many cases it is better to declare one 8 bit variable and assign each bit to flag

flag a particular state.

Flags are a special case of masking, but each bit represents a particular boolean state (on or off). An n

bit variable can hold n different flags. See the code example below for a typical example of using flags

-- you will see variations on this basic code very often.

1 #include <stdio.h>

/*

* define all 8 possible flags for an 8 bit variable

Computer Science from the Bottom Up

41

5 * name hex binary

*/

#define FLAG1 0x01 /* 00000001 */

#define FLAG2 0x02 /* 00000010 */

#define FLAG3 0x04 /* 00000100 */

10 #define FLAG4 0x08 /* 00001000 */

/* ... and so on */

#define FLAG8 0x80 /* 10000000 */

int main(int argc, char *argv[])

15 {

char flags = 0; /* an 8 bit variable */

/* set flags with a logical or */

flags = flags | FLAG1; /* set flag 1 */

20 flags = flags | FLAG3; /* set flag 3

/* check flags with a logical and. If the flag is set (1)

* then the logical and will return 1, causing the if

* condition to be true. */

Computer Science from the Bottom Up

42

25 if (flags & FLAG1)

printf("FLAG1 set!\n");

/* this of course will be untrue. */

if (flags & FLAG8)

30 printf("FLAG8 set!\n");

/* check multiple flags by using a logical or

* this will pass as FLAG1 is set */

if (flags & (FLAG1|FLAG4))

35 printf("FLAG1 or FLAG4 set!\n");

return 0;

}

Example 2.2. Using flags

2. Types and Number Representation

2.1. C Standards
Although a slight divergence, it is important to understand a bit of history about the C language.

C is the common languge of the systems programming world. Every operating system and its associat-

ed system libraries in common use is written in C, and every system provides a C compiler. To stop the

language diverging across each of these systems where each would be sure to make numerous incom-

Computer Science from the Bottom Up

43

patible changes, a strict standard has been written for the language.

Officially this standard is known as ISO/IEC 9899:1999(E), but is more commonly referred to by its

shortened name C99. The standard is maintained by the International Standards Organisation (ISO)

and the full standard is available for purchase online. Older standards versions such as C89 (the prede-

cessor to C99 released in 1989) and ANSI C are no longer in common usage and are encompassed

within the latest standard. The standard documentation is very technical, and details most every part of

the language. For example it explains the syntax (in Backus Naur form), standard #define values

and how operations should behave.

It is also important to note what the C standards does not define. Most importantly the standard needs

to be appropriate for every architecture, both present and future. Consequently it takes care not to de-

fine areas that are architecture dependent. The "glue" between the C standard and the underlying archi-

tecture is the Application Binary Interface (or ABI) which we discuss below. In several places the

standard will mention that a particular operation or construct has an unspecified or implementation de-

pendent result. Obviously the programmer can not depend on these outcomes if they are to write

portable code.

2.1.1. GNU C

The GNU C Compiler, more commonly referred to as gcc, almost completely implements the C99

standard. However it also implements a range of extensions to the standard which programmers will

often use to gain extra functionality, at the expense of portability to another compiler. These extensions

are usually related to very low level code and are much more common in the system programming

field; the most common extension being used in this area being inline assembly code. Programmers

should read the gcc documentation and understand when they may be using features that diverge from

the standard.

gcc can be directed to adhere strictly to the standard (the -std=c99 flag for example) and warn or

create an error when certain things are done that are not in the standard. This is obviously appropriate

if you need to ensure that you can move your code easily to another compiler.

2.2. Types
As programmers, we are familiar with using variables to represent an area of memory to hold a value.

In a typed language, such as C, every variable must be declared with a type. The type tells the compiler

about what we expect to store in a variable; the compiler can then both allocate sufficient space for

Computer Science from the Bottom Up

44

this usage and check that the programmer does not violate the rules of the type. In the example below,

we see an example of the space allocated for some common types of variables.

\0

h
e
l
l
o

int a
char c

int b[2]
char *h = "hello"

1 byte

4 bytes

6 bytes

2 x 4 bytes

b[1] | *(b+1)

b[0] | *b

System Memory

Computer Science from the Bottom Up

45

Figure 2.2. Types

The C99 standard purposely only mentions the smallest possible size of each of the types defined for

C. This is because across different processor architectures and operating systems the best size for types

can be wildly different.

To be completely safe programmers need to never assume the size of any of their variables, however a

functioning system obviously needs agreements on what sizes types are going to be used in the sys-

tem. Each architecture and operating system conforms to an Application Binary Interface or ABI. The

ABI for a system fills in the details between the C standard and the requirements of the underlying

hardware and operating system. An ABI is written for a specific processor and operating system com-

bination.

Table 2.13. Standard Integer Types and Sizes

Type C99 minimum size (bits) Common size (32 bit architecture)

char 8 8

short 16 16

int 16 32

long 32 32

long long 64 64

Pointers Implementation dependent 32

Above we can see the only divergence from the standard is that int is commonly a 32 bit quantity,

which is twice the strict minimum 16 bit size that the C99 requires.

Pointers are really just an address (i.e. their value is an address and thus "points" somewhere else in

memory) therefore a pointer needs to be sufficient in size to be able to address any memory in the sys-

tem.

2.2.1. 64 bit

One area that causes confusion is the introduction of 64 bit computing. This means that the processor

can handle addresses 64 bits in length (specifically the registers are 64 bits wide; a topic we discuss in

Chapter 3, Computer Architecture).

Computer Science from the Bottom Up

46

This firstly means that all pointers are required to be a 64 bits wide so they can represent any possible

address in the system. However, system implementers must then make decisions about the size of the

other types. Two common models are widely used, as shown below.

Table 2.14. Standard Scalar Types and Sizes

Type C99 minimum size (bits) Common size (LP64) Common size (Windows)

char 8 8 8

short 16 16 16

int 16 32 32

long 32 64 32

long long 64 64 64

Pointers Implementation dependent 64 64

You can see that in the LP64 (long-pointer 64) model long values are defined to be 64 bits wide.

This is different to the 32 bit model we showed previously. The LP64 model is widely used on UNIX

systems.

In the other model, long remains a 32 bit value. This maintains maximum compatibility with 32

code. This model is in use with 64 bit Windows.

There are good reasons why the size of int was not increased to 64 bits in either model. Consider

that if the size of int is increased to 64 bits you leave programmers no way to obtain a 32 bit vari-

able. The only possibly is redefining shorts to be a larger 32 bit type.

A 64 bit variable is so large that it is not generally required to represent many variables. For example,

loops very rarely repeat more times than would fit in a 32 bit variable (4294967296 times!). Images

usually are usually represented with 8 bits for each of a red, green and blue value and an extra 8 bits

for extra (alpha channel) information; a total of 32 bits. Consequently for many cases, using a 64 bit

variable will be wasting at least the top 32 bits (if not more). Not only this, but the size of an integer

array has now doubled too. This means programs take up more system memory (and thus more cache;

discussed in detail in Chapter 3, Computer Architecture) for no real improvement. For the same reason

Windows elected to keep their long values as 32 bits; since much of the Windows API was originally

written to use long variables on a 32 bit system and hence does not require the extra bits this saves

considerable wasted space in the system without having to re-write all the API.

Computer Science from the Bottom Up

47

If we consider the proposed alternative where short was redefined to be a 32 bit variable; program-

mers working on a 64 bit system could use it for variables they know are bounded to smaller values.

However, when moving back to a 32 bit system their same short variable would now be only 16

bits long, a value which is much more realistically overflowed (65536).

By making a programmer request larger variables when they know they will be needed strikes a bal-

ance with respect to portability concerns and wasting space in binaries.

2.2.2. Type qualifiers

The C standard also talks about some qualifiers for variable types. For example const means that a

variable will never be modified from its original value and volatile suggests to the compiler that

this value might change outside program execution flow so the compiler must be careful not to re-or-

der access to it in any way.

signed and unsigned are probably the two most important qualifiers; and they say if a variable

can take on a negative value or not. We examine this in more detail below.

Qualifiers are all intended to pass extra information about how the variable will be used to the compil-

er. This means two things; the compiler can check if you are violating your own rules (e.g. writing to a

const value) and it can make optimisations based upon the extra knowledge (examined in later

chapters).

2.2.3. Standard Types

C99 realises that all these rules, sizes and portability concerns can become very confusing very quick-

ly. To help, it provides a series of special types which can specify the exact properties of a variable.

These are defined in <stdint.h> and have the form qtypes_t where q is a qualifier, type is

the base type, s is the width in bits and _t is an extension so you know you are using the C99 de-

fined types.

So for example uint8_t is an unsigned integer exactly 8 bits wide. Many other types are defined;

the complete list is detailed in C99 17.8 or (more cryptically) in the header file. 1

1. Note that C99 also has portability helpers for printf . The PRI macros in <inttypes.h> can be

used as specifiers for types of specified sizes. Again see the standard or pull apart the headers for full

information.

Computer Science from the Bottom Up

48

It is up to the system implementing the C99 standard to provide these types for you by mapping them

to appropriate sized types on the target system; on Linux these headers are provided by the system li-

braries.

2.2.4. Types in action

Below in Example 2.3, “Example of warnings when types are not matched” we see an example of how

types place restrictions on what operations are valid for a variable, and how the compiler can use this

information to warn when variables are used in an incorrect fashion. In this code, we firstly assign an

integer value into a char variable. Since the char variable is smaller, we loose the correct value of

the integer. Further down, we attempt to assign a pointer to a char to memory we designated as an

integer . This operation can be done; but it is not safe. The first example is run on a 32-bit Pentium

machine, and the correct value is returned. However, as shown in the second example, on a 64-bit Ita-

nium machine a pointer is 64 bits (8 bytes) long, but an integer is only 4 bytes long. Clearly, 8 bytes

can not fit into 4! We can attempt to "fool" the compiler by casting the value before assigning it; note

that in this case we have shot ourselves in the foot by doing this cast and ignoring the compiler warn-

ing since the smaller variable can not hold all the information from the pointer and we end up with an

invalid address.

1 /*

* types.c

*/

5 #include <stdio.h>

#include <stdint.h>

int main(void)

{

Computer Science from the Bottom Up

49

10 char a;

char *p = "hello";

int i;

15 // moving a larger variable into a smaller one

i = 0x12341234;

a = i;

i = a;

printf("i is %d\n", i);

20

// moving a pointer into an integer

printf("p is %p\n", p);

i = p;

// "fooling" with casts

25 i = (int)p;

p = (char*)i;

printf("p is %p\n", p);

return 0;

Computer Science from the Bottom Up

50

30 }

1 $ uname -m

i686

$ gcc -Wall -o types types.c

5 types.c: In function 'main':

types.c:19: warning: assignment makes integer from pointer without a cast

$./types

i is 52

10 p is 0x80484e8

p is 0x80484e8

$ uname -m

ia64

15

$ gcc -Wall -o types types.c

types.c: In function 'main':

types.c:19: warning: assignment makes integer from pointer without a cast

types.c:21: warning: cast from pointer to integer of different size

Computer Science from the Bottom Up

51

20 types.c:22: warning: cast to pointer from integer of different size

$./types

i is 52

p is 0x40000000000009e0

25 p is 0x9e0

Example 2.3. Example of warnings when types are not matched

2.3. Number Representation

2.3.1. Negative Values

With our modern base 10 numeral system we indicate a negative number by placing a minus (-) sign

in front of it. When using binary we need to use a different system to indicate negative numbers.

There is only one scheme in common use on modern hardware, but C99 defines three acceptable

methods for negative value representation.

2.3.1.1. Sign Bit

The most straight forward method is to simply say that one bit of the number indicates either a nega-

tive or positive value depending on it being set or not.

This is analogous to mathematical approach of having a + and - . This is fairly logical, and some of

the original computers did represent negative numbers in this way. But using binary numbers opens up

some other possibilities which make the life of hardware designers easier.

However, notice that the value 0 now has two equivalent values; one with the sign bit set and one

without. Sometimes these values are referred to as +0 and -0 respectively.

2.3.1.2. One's Complement

One's complement simply applies the not operation to the positive number to represent the negative

number. So, for example the value -90 (-0x5A) is represented by ~01011010 = 10100101 1

Computer Science from the Bottom Up

52

With this scheme the biggest advantage is that to add a negative number to a positive number no spe-

cial logic is required, except that any additional carry left over must be added back to the final value.

Consider

Table 2.15. One's Complement Addition

Decimal Binary Op

-90 10100101 +

100 01100100

--- --------

10 100001001 9

00001010 10

If you add the bits one by one, you find you end up with a carry bit at the end (highlighted above). By

adding this back to the original we end up with the correct value, 10

Again we still have the problem with two zeros being represented. Again no modern computer uses

one's complement, mostly because there is a better scheme.

2.3.1.3. Two's Complement

Two's complement is just like one's complement, except the negative representation has one added to it

and we discard any left over carry bit. So to continue with the example from before, -90 would be

~01011010+1=10100101+1 = 10100110 .

This means there is a slightly odd symmetry in the numbers that can be represented; for example with

an 8 bit integer we have 2^8 = 256 possible values; with our sign bit representation we could repre-

sent -127 thru 127 but with two's complement we can represent -127 thru 128. This is because we have

removed the problem of having two zeros; consider that "negative zero" is (~00000000

+1)=(11111111+1)=00000000 (note discarded carry bit).

Table 2.16. Two's Complement Addition

Decimal Binary Op

-90 10100110 +

1. The ~ operator is the C language operator to apply NOT to the value. It is also occasionally called

the one's complement operator, for obvious reasons now!

Computer Science from the Bottom Up

53

Decimal Binary Op

100 01100100

--- --------

10 00001010

You can see that by implementing two's complement hardware designers need only provide logic for

addition circuits; subtraction can be done by two's complement negating the value to be subtracted and

then adding the new value.

Similarly you could implement multiplication with repeated addition and division with repeated sub-

traction. Consequently two's complement can reduce all simple mathematical operations down to addi-

tion!

All modern computers use two's complement representation.

2.3.1.3.1. Sign-extension

Because of two's complement format, when increasing the size of signed value, it is important that the

additional bits be sign-extended; that is, copied from the top-bit of the existing value.

For example, the value of an 32-bit int -10 would be represented in two's complement binary as

11111111111111111111111111110110 . If one were to cast this to a 64-bit long long int , we

would need to ensure that the additional 32-bits were set to 1 to maintain the same sign as the origi-

nal.

Thanks to two's complement, it is sufficient to take the top bit of the existing value and replace all the

added bits with this value. This processes is referred to as sign-extension and is usually handled by the

compiler in situations as defined by the language standard, with the processor generally providing spe-

cial instructions to take a value and sign-extended it to some larger value.

2.3.2. Floating Point

So far we have only discussed integer or whole numbers; the class of numbers that can represent deci-

mal values is called floating point.

To create a decimal number, we require some way to represent the concept of the decimal place in bi-

nary. The most common scheme for this is known as the IEEE-754 floating point standard because the

standard is published by the Institute of Electric and Electronics Engineers. The scheme is conceptual-

Computer Science from the Bottom Up

54

ly quite simple and is somewhat analogous to "scientific notation".

In scientific notation the value 123.45 might commonly be represented as 1.2345x102 . We call

1.2345 the mantissa or significand, 10 is the radix and 2 is the exponent.

In the IEEE floating point model, we break up the available bits to represent the sign, mantissa and ex-

ponent of a decimal number. A decimal number is represented by sign × significand × 2^expo-

nent .

The sign bit equates to either 1 or -1 . Since we are working in binary, we always have the implied

radix of 2 .

There are differing widths for a floating point value -- we examine below at only a 32 bit value. More

bits allows greater precision.

Table 2.17. IEEE Floating Point

Sign Exponent Significand/Mantissa

S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM

The other important factor is bias of the exponent. The exponent needs to be able to represent both

positive and negative values, thus an implied value of 127 is subtracted from the exponent. For ex-

ample, an exponent of 0 has an exponent field of 127 , 128 would represent 1 and 126 would

represent -1 .

Each bit of the significand adds a little more precision to the values we can represent. Consider the sci-

entific notation representation of the value 198765 . We could write this as 1.98765x106 , which

corresponds to a representation below

Table 2.18. Scientific Notation for 1.98765x10^6

100 . 10-1 10-2 10-3 10-4 10-5

1 . 9 8 7 6 5

Each additional digit allows a greater range of decimal values we can represent. In base 10, each digit

after the decimal place increases the precision of our number by 10 times. For example, we can repre-

sent 0.0 through 0.9 (10 values) with one digit of decimal place, 0.00 through 0.99 (100 val-

ues) with two digits, and so on. In binary, rather than each additional digit giving us 10 times the preci-

Computer Science from the Bottom Up

55

sion, we only get two times the precision, as illustrated in the table below. This means that our binary

representation does not always map in a straight-forward manner to a decimal representation.

Table 2.19. Significands in binary

20 . 2-1 2-2 2-3 2-4 2-5

1 . 1/2 1/4 1/8 1/16 1/32

1 . 0.5 0.25 0.125 0.0625 0.03125

With only one bit of precision, our fractional precision is not very big; we can only say that the frac-

tion is either 0 or 0.5 . If we add another bit of precision, we can now say that the decimal value is

one of either 0,0.25,0.5,0.75 . With another bit of precision we can now represent the values

0,0.125,0.25,0.375,0.5,0.625,0.75,0.875 .

Increasing the number of bits therefore allows us greater and greater precision. However, since the

range of possible numbers is infinite we will never have enough bits to represent any possible value.

For example, if we only have two bits of precision and need to represent the value 0.3 we can only

say that it is closest to 0.25 ; obviously this is insufficient for most any application. With 22 bits of

significand we have a much finer resolution, but it is still not enough for most applications. A dou-

ble value increases the number of significand bits to 52 (it also increases the range of exponent val-

ues too). Some hardware has an 84-bit float, with a full 64 bits of significand. 64 bits allows a tremen-

dous precision and should be suitable for all but the most demanding of applications (XXX is this suf-

ficient to represent a length to less than the size of an atom?)

1 $ cat float.c

#include <stdio.h>

int main(void)

5 {

float a = 0.45;

Computer Science from the Bottom Up

56

float b = 8.0;

double ad = 0.45;

10 double bd = 8.0;

printf("float+float, 6dp : %f\n", a+b);

printf("double+double, 6dp : %f\n", ad+bd);

printf("float+float, 20dp : %10.20f\n", a+b);

15 printf("dobule+double, 20dp : %10.20f\n", ad+bd);

return 0;

}

20 $ gcc -o float float.c

$./float

float+float, 6dp : 8.450000

double+double, 6dp : 8.450000

25 float+float, 20dp : 8.44999998807907104492

dobule+double, 20dp : 8.44999999999999928946

Computer Science from the Bottom Up

57

$ python

Python 2.4.4 (#2, Oct 20 2006, 00:23:25)

30 [GCC 4.1.2 20061015 (prerelease) (Debian 4.1.1-16.1)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> 8.0 + 0.45

8.4499999999999993

Example 2.4. Floats versus Doubles

A practical example is illustrated above. Notice that for the default 6 decimal places of precision given

by printf both answers are the same, since they are rounded up correctly. However, when asked to

give the results to a larger precision, in this case 20 decimal places, we can see the results start to di-

verge. The code using doubles has a more accurate result, but it is still not exactly correct. We can

also see that programmers not explicitly dealing with float values still have problems with preci-

sion of variables!

2.3.2.1. Normalised Values

In scientific notation, we can represent a value in many different ways. For example, 10023x10^0 =

1002.3x101 = 100.23x102 . We thus define the normalised version as the one where 1/radix <=

significand < 1 . In binary this ensures that the leftmost bit of the significand is always one.

Knowing this, we can gain an extra bit of precision by having the standard say that the leftmost bit be-

ing one is implied.

Table 2.20. Example of normalising 0.375

20 . 2-1 2-2 2-3 2-4 2-5 Exponent Calculation

0 . 0 1 1 0 0 2^0 (0.25+0.125) × 1 = 0.375

0 . 1 1 0 0 0 2^-1 (0.5+0.25)×.5=0.375

Computer Science from the Bottom Up

58

20 . 2-1 2-2 2-3 2-4 2-5 Exponent Calculation

1 . 1 0 0 0 0 2^-2 (1+0.5)×0.25=0.375

As you can see above, we can make the value normalised by moving the bits upwards as long as we

compensate by increasing the exponent.

2.3.2.1.1. Normalisation Tricks

A common problem programmers face is finding the first set bit in a bitfield. Consider the bitfield

0100 ; from the right the first set bit would be bit 2 (starting from zero, as is conventional).

The standard way to find this value is to shift right, check if the uppermost bit is a 1 and either termi-

nate or repeat. This is a slow process; if the bitfield is 64 bits long and only the very last bit is set, you

must go through all the preceding 63 bits!

However, if this bitfield value were the signficand of a floating point number and we were to nor-

malise it, the value of the exponent would tell us how many times it was shifted. The process of nor-

malising a number is generally built into the floating point hardware unit on the processor, so operates

very fast; usually much faster than the repeated shift and check operations.

The example program below illustrates two methods of finding the first set bit on an Itanium proces-

sor. The Itanium, like most server processors, has support for an 80-bit extended floating point type,

with a 64-bit significand. This means a unsigned long neatly fits into the significand of a long

double . When the value is loaded it is normalised, and and thus by reading the exponent value (mi-

nus the 16 bit bias) we can see how far it was shifted.

1 #include <stdio.h>

int main(void)

{

5 // in binary = 1000 0000 0000 0000

// bit num 5432 1098 7654 3210

Computer Science from the Bottom Up

59

int i = 0x8000;

int count = 0;

while (!(i & 0x1)) {

10 count ++;

i = i >> 1;

}

printf("First non-zero (slow) is %d\n", count);

15 // this value is normalised when it is loaded

long double d = 0x8000UL;

long exp;

// Itanium "get floating point exponent" instruction

20 asm ("getf.exp %0=%1" : "=r"(exp) : "f"(d));

// note exponent include bias

printf("The first non-zero (fast) is %d\n", exp - 65535);

Computer Science from the Bottom Up

60

25 }

Example 2.5. Program to find first set bit

2.3.2.2. Bringing it together

In the example code below we extract the components of a floating point number and print out the val-

ue it represents. This will only work for a 32 bit floating point value in the IEEE format; however this

is common for most architectures with the float type.

1 #include <stdio.h>

#include <string.h>

#include <stdlib.h>

5 /* return 2^n */

int two_to_pos(int n)

{

if (n == 0)

return 1;

10 return 2 * two_to_pos(n - 1);

}

double two_to_neg(int n)

{

15 if (n == 0)

Computer Science from the Bottom Up

61

return 1;

return 1.0 / (two_to_pos(abs(n)));

}

20 double two_to(int n)

{

if (n >= 0)

return two_to_pos(n);

if (n < 0)

25 return two_to_neg(n);

return 0;

}

/* Go through some memory "m" which is the 24 bit significand of a

30 floating point number. We work "backwards" from the bits

furthest on the right, for no particular reason. */

double calc_float(int m, int bit)

{

/* 23 bits; this terminates recursion */

35 if (bit > 23)

Computer Science from the Bottom Up

62

return 0;

/* if the bit is set, it represents the value 1/2^bit */

if ((m >> bit) & 1)

40 return 1.0L/two_to(23 - bit) + calc_float(m, bit + 1);

/* otherwise go to the next bit */

return calc_float(m, bit + 1);

}

45

int main(int argc, char *argv[])

{

float f;

int m,i,sign,exponent,significand;

50

if (argc != 2)

{

printf("usage: float 123.456\n");

exit(1);

55 }

Computer Science from the Bottom Up

63

if (sscanf(argv[1], "%f", &f) != 1)

{

printf("invalid input\n");

60 exit(1);

}

/* We need to "fool" the compiler, as if we start to use casts

(e.g. (int)f) it will actually do a conversion for us. We

65 want access to the raw bits, so we just copy it into a same

sized variable. */

memcpy(&m, &f, 4);

/* The sign bit is the first bit */

70 sign = (m >> 31) & 0x1;

/* Exponent is 8 bits following the sign bit */

exponent = ((m >> 23) & 0xFF) - 127;

75 /* Significand fills out the float, the first bit is implied

Computer Science from the Bottom Up

64

to be 1, hence the 24 bit OR value below. */

significand = (m & 0x7FFFFF) | 0x800000;

/* print out a power representation */

80 printf("%f = %d * (", f, sign ? -1 : 1);

for(i = 23 ; i >= 0 ; i--)

{

if ((significand >> i) & 1)

printf("%s1/2^%d", (i == 23) ? "" : " + ",

85 23-i);

}

printf(") * 2^%d\n", exponent);

/* print out a fractional representation */

90 printf("%f = %d * (", f, sign ? -1 : 1);

for(i = 23 ; i >= 0 ; i--)

{

if ((significand >> i) & 1)

printf("%s1/%d", (i == 23) ? "" : " + ",

95 (int)two_to(23-i));

Computer Science from the Bottom Up

65

}

printf(") * 2^%d\n", exponent);

/* convert this into decimal and print it out */

100 printf("%f = %d * %.12g * %f\n",

f,

(sign ? -1 : 1),

calc_float(significand, 0),

two_to(exponent));

105

/* do the math this time */

printf("%f = %.12g\n",

f,

(sign ? -1 : 1) *

110 calc_float(significand, 0) *

two_to(exponent)

);

return 0;

Computer Science from the Bottom Up

66

115 }

Example 2.6. Examining Floats

Sample output of the value 8.45 , which we previously examined, is shown below.

1 $./float 8.45

8.450000 = 1 * (1/2^0 + 1/2^5 + 1/2^6 + 1/2^7 + 1/2^10 + 1/2^11 + 1/2^14 + 1/2^15 + 1/2^18 + 1/2^19 + 1/2^22 + 1/2^23) * 2^3

8.450000 = 1 * (1/1 + 1/32 + 1/64 + 1/128 + 1/1024 + 1/2048 + 1/16384 + 1/32768 + 1/262144 + 1/524288 + 1/4194304 + 1/8388608) * 2^3

8.450000 = 1 * 1.05624997616 * 8.000000

5 8.450000 = 8.44999980927

Example 2.7. Analysis of 8.45

From this example, we get some idea of how the inaccuracies creep into our floating point numbers.

Chapter 3. Computer Architecture

Computer Science from the Bottom Up

67

1. The CPU

MEMORY

INSTRUCTIONS

R2=LOAD 0x100

R1=100

0x100 | 10

0x090 | 0

0x120 | 0

CPU

0x110 | 110

R3=ADD R1,R2

STORE 0x110=R3

R
E

G
IS

T
E

R
S

The CPU performs instructions on values held in registers. This example shows firstly setting the value

of R1 to 100, loading the value from memory location 0x100 into R2, adding the two values together and

placing the result in R3 and finally storing the new value (110) to R4 (for further use).

Figure 3.1. The CPU

To greatly simplify, a computer consists of a central processing unit (CPU) attached to memory. The

figure above illustrates the general principle behind all computer operations.

The CPU executes instructions read from memory. There are two categories of instructions

1. Those that load values from memory into registers and store values from registers to memory.

2. Those that operate on values stored in registers. For example adding, subtracting multiplying

or dividing the values in two registers, performing bitwise operations (and, or, xor, etc) or

performing other mathematical operations (square root, sin, cos, tan, etc).

So in the example we are simply adding 100 to a value stored in memory, and storing this new result

Computer Science from the Bottom Up

68

back into memory.

1.1. Branching
Apart from loading or storing, the other important operation of a CPU is branching. Internally, the

CPU keeps a record of the next instruction to be executed in the instruction pointer. Usually, the in-

struction pointer is incremented to point to the next instruction sequentially; the branch instruction will

usually check if a specific register is zero or if a flag is set and, if so, will modify the pointer to a dif-

ferent address. Thus the next instruction to execute will be from a different part of program; this is

how loops and decision statements work.

For example, a statement like if (x==0) might be implemented by finding the or of two registers,

one holding x and the other zero; if the result is zero the comparison is true (i.e. all bits of x were

zero) and the body of the statement should be taken, otherwise branch past the body code.

1.2. Cycles
We are all familiar with the speed of the computer, given in Megahertz or Gigahertz (millions or thou-

sands of millions cycles per second). This is called the clock speed since it is the speed that an internal

clock within the computer pulses.

The pulses are used within the processor to keep it internally synchronised. On each tick or pulse an-

other operation can be started; think of the clock like the person beating the drum to keep the rower's

oars in sync.

1.3. Fetch, Decode, Execute, Store
Executing a single instruction consists of a particular cycle of events; fetching, decoding, executing

and storing.

For example, to do the add instruction above the CPU must

1. Fetch : get the instruction from memory into the processor.

2. Decode : internally decode what it has to do (in this case add).

3. Execute : take the values from the registers, actually add them together

4. Store : store the result back into another register. You might also see the term retiring the in-

Computer Science from the Bottom Up

69

struction.

1.3.1. Looking inside a CPU

Internally the CPU has many different sub components that perform each of the above steps, and gen-

erally they can all happen independently of each other. This is analogous to a physical production line,

where there are many stations where each step has a particular task to perform. Once done it can pass

the results to the next station and take a new input to work on.

Store
Load

FP

* /
+ -

FP

Decode Instruction

Floating Point Register File

AGU ALU

SSE/MMX (etc)

program code

Integer Register File

Cache

RAM

The CPU is made up of many different sub-components, each doing a dedicated task.

Figure 3.2. Inside the CPU

Figure 3.2, “Inside the CPU” shows a very simple block diagram illustrating some of the main parts

Computer Science from the Bottom Up

70

of a modern CPU.

You can see the instructions come in and are decoded by the processor. The CPU has two main types

of registers, those for integer calculations and those for floating point calculations. Floating point is a

way of representing numbers with a decimal place in binary form, and is handled differently within the

CPU. MMX (multimedia extension) and SSE (Streaming Single Instruction Multiple Data) or Altivec

registers are similar to floating point registers.

A register file is the collective name for the registers inside the CPU. Below that we have the parts of

the CPU which really do all the work.

We said that processors are either loading or storing a value into a register or from a register into mem-

ory, or doing some operation on values in registers.

The Arithmetic Logic Unit (ALU) is the heart of the CPU operation. It takes values in registers and

performs any of the multitude of operations the CPU is capable of. All modern processors have a num-

ber of ALUs so each can be working independently. In fact, processors such as the Pentium have both

fast and slow ALUs; the fast ones are smaller (so you can fit more on the CPU) but can do only the

most common operations, slow ALUs can do all operations but are bigger.

The Address Generation Unit (AGU) handles talking to cache and main memory to get values into the

registers for the ALU to operate on and get values out of registers back into main memory.

Floating point registers have the same concepts, but use slightly different terminology for their compo-

nents.

1.3.2. Pipelining

As we can see above, whilst the ALU is adding registers together is completely separate to the AGU

writing values back to memory, so there is no reason why the CPU can not be doing both at once. We

also have multiple ALUs in the system, each which can be working on separate instructions. Finally

the CPU could be doing some floating point operations with its floating point logic whilst integer in-

structions are in flight too. This process is called pipelining1, and a processor that can do this is re-

ferred to as a superscalar architecture. All modern processors are superscalar.

1. In fact, any modern processor has many more than four stages it can pipeline, above we have only

shown a very simplified view. The more stages that can be executed at the same time, the deeper the

pipeline.

Computer Science from the Bottom Up

71

Another analogy might be to think of the pipeline like a hose that is being filled with marbles, except

our marbles are instructions for the CPU. Ideally you will be putting your marbles in one end, one af-

ter the other (one per clock pulse), filling up the pipe. Once full, for each marble (instruction) you

push in all the others will move to the next position and one will fall out the end (the result).

Branch instruction play havoc with this model however, since they may or may not cause execution to

start from a different place. If you are pipelining, you will have to basically guess which way the

branch will go, so you know which instructions to bring into the pipeline. If the CPU has predicted

correctly, everything goes fine!1 Conversely, if the processor has predicted incorrectly it has wasted a

lot of time and has to clear the pipeline and start again.

This process is usually referred to as a pipeline flush and is analogous to having to stop and empty out

all your marbles from your hose!

1.3.2.1. Branch Prediction

pipeline flush, predict taken, predict not taken, branch delay slots

1.3.3. Reordering

In fact, if the CPU is the hose, it is free to reorder the marbles within the hose, as long as they pop out

the end in the same order you put them in. We call this program order since this is the order that in-

structions are given in the computer program.

1

1: r3 = r1 * r2

2: r4 = r2 + r3

3: r7 = r5 * r6

5 4: r8 = r1 + r7

1. Processors such as the Pentium use a trace cache to keep a track of which way branches are going.

Much of the time it can predict which way a branch will go by remembering its previous result. For

example, in a loop that happens 100 times, if you remember the last result of the branch you will be

right 99 times, since only the last time will you actually continue with the program.

Computer Science from the Bottom Up

72

Figure 3.3. Reorder buffer example

Consider an instruction stream such as that shown in Figure 3.3, “Reorder buffer example” Instruction

2 needs to wait for instruction 1 to complete fully before it can start. This means that the pipeline has

to stall as it waits for the value to be calculated. Similarly instructions 3 and 4 have a dependency on

r7. However, instructions 2 and 3 have no dependency on each other at all; this means they operate on

completely separate registers. If we swap instructions 2 and 3 we can get a much better ordering for

the pipeline since the processor can be doing useful work rather than waiting for the pipeline to com-

plete to get the result of a previous instruction.

However, when writing very low level code some instructions may require some security about how

operations are ordered. We call this requirement memory semantics. If you require acquire semantics

this means that for this instruction you must ensure that the results of all previous instructions have

been completed. If you require release semantics you are saying that all instructions after this one

must see the current result. Another even stricter semantic is a memory barrier or memory fence which

requires that operations have been committed to memory before continuing.

On some architectures these semantics are guaranteed for you by the processor, whilst on others you

must specify them explicitly. Most programmers do not need to worry directly about them, although

you may see the terms.

1.4. CISC v RISC
A common way to divide computer architectures is into Complex Instruction Set Computer (CISC)

and Reduced Instruction Set Computer (RISC).

Note in the first example, we have explicitly loaded values into registers, performed an addition and

stored the result value held in another register back to memory. This is an example of a RISC approach

to computing -- only performing operations on values in registers and explicitly loading and storing

values to and from memory.

A CISC approach may be only a single instruction taking values from memory, performing the addi-

tion internally and writing the result back. This means the instruction may take many cycles, but ulti-

mately both approaches achieve the same goal.

All modern architectures would be considered RISC architectures1.

1. Even the most common architecture, the Intel Pentium, whilst having an instruction set that is cate-

gorised as CISC, internally breaks down instructions to RISC style sub-instructions inside the chip

Computer Science from the Bottom Up

73

There are a number of reasons for this

• Whilst RISC makes assembly programming becomes more complex, since virtually all pro-

grammers use high level languages and leave the hard work of producing assembly code to

the compiler, so the other advantages outweigh this disadvantage.

• Because the instructions in a RISC processor are much more simple, there is more space in-

side the chip for registers. As we know from the memory hierarchy, registers are the fastest

type of memory and ultimately all instructions must be performed on values held in registers,

so all other things being equal more registers leads to higher performance.

• Since all instructions execute in the same time, pipelining is possible. We know pipelining re-

quires streams of instructions being constantly fed into the processor, so if some instructions

take a very long time and others do not, the pipeline becomes far to complex to be effective.

1.4.1. EPIC

The Itanium processor, which is used in many example through this book, is an example of a modified

architecture called Explicitly Parallel Instruction Computing.

We have discussed how superscaler processors have pipelines that have many instructions in flight at

the same time in different parts of the processor. Obviously for this to work as well as possible instruc-

tions should be given the processor in an order that can make best use of the available elements of the

CPU.

Traditionally organising the incoming instruction stream has been the job of the hardware. Instructions

are issued by the program in a sequential manner; the processor must look ahead and try to make deci-

sions about how to organise the incoming instructions.

The theory behind EPIC is that there is more information available at higher levels which can make

these decisions better than the processor. Analysing a stream of assembly language instructions, as

current processors do, loses a lot of information that the programmer may have provided in the origi-

nal source code. Think of it as the difference between studying a Shakespeare play and reading the

Cliff's Notes version of the same. Both give you the same result, but the original has all sorts of extra

information that sets the scene and gives you insight into the characters.

Thus the logic of ordering instructions can be moved from the processor to the compiler. This means

before executing.

Computer Science from the Bottom Up

74

that compiler writers need to be smarter to try and find the best ordering of code for the processor. The

processor is also significantly simplified, since a lot of its work has been moved to the compiler.1

Another term often used around EPIC is Very Long Instruction World (VLIW), which is where each

instruction to the processor is extended to tell the processor about where it should execute the instruc-

tion in its internal units. The problem with this approach is that code is then completely dependent on

the model of processor is has been compiled for. Companies are always making revisions to hardware,

and making customers recompile their application every single time, and maintain a range of different

binaries was impractical.

EPIC solves this in the usual computer science manner by adding a layer of abstraction. Rather than

explicitly specifying the exact part of the processor the instructions should execute on, EPIC creates a

simplified view with a few core units like memory, integer and floating point.

2. Memory

2.1. Memory Hierarchy
The CPU can only directly fetch instructions and data from cache memory, located directly on the

processor chip. Cache memory must be loaded in from the main system memory (the Random Access

Memory, or RAM). RAM however, only retains its contents when the power is on, so needs to be

stored on more permanent storage.

We call these layers of memory the memory hierarchy

Table 3.1. Memory Hierarchy

Speed Memory Description

Fastest Cache

Cache memory is memory actually embedded inside the CPU. Cache memory is

very fast, typically taking only once cycle to access, but since it is embedded di-

rectly into the CPU there is a limit to how big it can be. In fact, there are several

sub-levels of cache memory (termed L1, L2, L3) all with slightly increasing

speeds.

RAM

All instructions and storage addresses for the processor must come from RAM.

Although RAM is very fast, there is still some significant time taken for the CPU

to access it (this is termed latency). RAM is stored in separate, dedicated chips at-

1.

Computer Science from the Bottom Up

75

Speed Memory Description

tached to the motherboard, meaning it is much larger than cache memory.

Slowest Disk

We are all familiar with software arriving on a floppy disk or CDROM, and sav-

ing our files to the hard disk. We are also familiar with the long time a program

can take to load from the hard disk -- having physical mechanisms such as spin-

ning disks and moving heads means disks are the slowest form of storage. But

they are also by far the largest form of storage.

The important point to know about the memory hierarchy is the trade offs between speed and size —

the faster the memory the smaller it is. Of course, if you can find a way to change this equation, you'll

end up a billionaire!

The reason caches are effective is because computer code generally exhibits two forms of locality

1. Spatial locality suggests that data within blocks is likely to be accessed together.

2. Temporal locality suggests that data that was used recently will likely be used again shortly.

This means that benefits are gained by implementing as much quickly accessible memory (temporal)

storing small blocks of relevant information (spatial) as practically possible.

2.2. Cache in depth
Cache is one of the most important elements of the CPU architecture. To write efficient code develop-

ers need to have an understanding of how the cache in their systems works.

The cache is a very fast copy of the slower main system memory. Cache is much smaller than main

memories because it is included inside the processor chip alongside the registers and processor logic.

This is prime real estate in computing terms, and there are both economic and physical limits to its

maximum size. As manufacturers find more and more ways to cram more and more transistors onto a

chip cache sizes grow considerably, but even the largest caches are tens of megabytes, rather than the

gigabytes of main memory or terabytes of hard disk otherwise common.

The cache is made up of small chunks of mirrored main memory. The size of these chunks is called the

line size, and is typically something like 32 or 64 bytes. When talking about cache, it is very common

to talk about the line size, or a cache line, which refers to one chunk of mirrored main memory. The

cache can only load and store memory in sizes a multiple of a cache line.

Computer Science from the Bottom Up

76

Caches have their own hierarchy, commonly termed L1, L2 and L3. L1 cache is the fastest and small-

est; L2 is bigger and slower, and L3 more so.

L1 caches are generally further split into instruction caches and data, known as the "Harvard Architec-

ture" after the relay based Harvard Mark-1 computer which introduced it. Split caches help to reduce

pipeline bottlenecks as earlier pipeline stages tend to reference the instruction cache and later stages

the data cache. Apart from reducing contention for a shared resource, providing separate caches for in-

structions also allows for alternate implementations which may take advantage of the nature of instruc-

tion streaming; they are read-only so do not need expensive on-chip features such as multi-porting, nor

need to handle handle sub-block reads because the instruction stream generally uses more regular

sized accesses.

4 way set associative

set

way

Fully AssociativeDirect

Total system memory

Possible locations in cache for shaded values

A given cache line may find a valid home in one of the shaded entries.

Figure 3.4. Cache Associativity

During normal operation the processor is constantly asking the cache to check if a particular address is

stored in the cache, so the cache needs some way to very quickly find if it has a valid line present or

Computer Science from the Bottom Up

77

not. If a given address can be cached anywhere within the cache, every cache line needs to be searched

every time a reference is made to determine a hit or a miss. To keep searching fast this is done in par-

allel in the cache hardware, but searching every entry is generally far too expensive to implement for a

reasonable sized cache. Thus the cache can be made simpler by enforcing limits on where a particular

address must live. This is a trade-off; the cache is obviously much, much smaller than the system

memory, so some addresses must alias others. If two addresses which alias each other are being con-

stantly updated they are said to fight over the cache line. Thus we can categorise caches into three gen-

eral types, illustrated in Figure 3.4, “Cache Associativity”.

• Direct mapped caches will allow a cache line to exist only in a singe entry in the cache. This

is the simplest to implement in hardware, but as illustrated in Figure 3.4, “Cache Associativi-

ty” there is no potential to avoid aliasing because the two shaded addresses must share the

same cache line.

• Fully Associative caches will allow a cache line to exist in any entry of the cache. This avoids

the problem with aliasing, since any entry is available for use. But it is very expensive to im-

plement in hardware because every possible location must be looked up simultaneously to de-

termine if a value is in the cache.

• Set Associative caches are a hybrid of direct and fully associative caches, and allow a particu-

lar cache value to exist in some subset of the lines within the cache. The cache is divided into

even compartments called ways, and a particular address could be located in any way. Thus

an n-way set associative cache will allow a cache line to exist in any entry of a set sized total

blocks mod n — Figure 3.4, “Cache Associativity” shows a sample 8-element, 4-way set as-

sociative cache; in this case the two addresses have four possible locations, meaning only half

the cache must be searched upon lookup. The more ways, the more possible locations and the

less aliasing, leading to overall better performance.

Once the cache is full the processor needs to get rid of a line to make room for a new line. There are

many algorithms by which the processor can choose which line to evict; for example least recently

used (LRU) is an algorithm where the oldest unused line is discarded to make room for the new line.

When data is only read from the cache there is no need to ensure consistency with main memory.

However, when the processor starts writing to cache lines it needs to make some decisions about how

to update the underlying main memory. A write-through cache will write the changes directly into the

main system memory as the processor updates the cache. This is slower since the process of writing to

the main memory is, as we have seen, slower. Alternatively a write-back cache delays writing the

changes to RAM until absolutely necessary. The obvious advantage is that less main memory access is

Computer Science from the Bottom Up

78

required when cache entries are written. Cache lines that have been written but not committed to mem-

ory are referred to as dirty. The disadvantage is that when a cache entry is evicted, it may require two

memory accesses (one to write dirty data main memory, and another to load the new data).

If an entry exists in both a higher-level and lower-level cache at the same time, we say the higher-level

cache is inclusive. Alternatively, if the higher-level cache having a line removes the possibility of a

lower level cache having that line, we say it is exclusive. This choice is discussed further in Sec-

tion 4.1.1.1, “Cache exclusivity in SMP systems”.

2.2.1. Cache Addressing

So far we have not discussed how a cache decides if a given address resides in the cache or not. Clear-

ly, caches must keep a directory of what data currently resides in the cache lines. The cache directory

and data may co-located on the processor, but may also be separate — such as in the case of the POW-

ER5 processor which has an on-core L3 directory, but actually accessing the data requires traversing

the L3 bus to access off-core memory. An arrangement like this can facilitate quicker hit/miss process-

ing without the other costs of keeping the entire cache on-core.

M
U

X

Way 1

Way 2

M
U

X

Way 1

Way 2

Way 3

Way 4

Offset
TAG INDEX

Less Associative

Less set-associativity means more index bits

Offset
TAG INDEX

More Associative

More set-associativity means more tag bits

Address

Address

Tags need to be checked in parallel to keep latency times low; more tag bits (i.e. less set associativity)

requires more complex hardware to achieve this. Alternatively more set associativity means less tags,

but the processor now needs hardware to multiplex the output of the many sets, which can also add la-

Computer Science from the Bottom Up

79

tency.

Figure 3.5. Cache tags

To quickly decide if an address lies within the cache it is separated into three parts; the tag and the in-

dex and the offset.

The offset bits depend on the line size of the cache. For example, a 32-byte line size would use the last

5-bits (i.e. 25) of the address as the offset into the line.

The index is the particular cache line that an entry may reside in. As an example, let us consider a

cache with 256 entries. If this is a direct-mapped cache, we know the data may reside in only one pos-

sible line, so the next 8-bits (28) after the offset describe the line to check - between 0 and 255.

Now, consider the same 256 element cache, but divided into two ways. This means there are two

groups of 128 lines, and the given address may reside in either of these groups. Consequently only

7-bits are required as an index to offset into the 128-entry ways. For a given cache size, as we increase

the number of ways, we decrease the number of bits required as an index since each way gets smaller.

The cache directory still needs to check if the particular address stored in the cache is the one it is in-

terested in. Thus the remaining bits of the address are the tag bits which the cache directory checks

against the incoming address tag bits to determine if there is a cache hit or not. This relationship is il-

lustrated in Figure 3.5, “Cache tags”.

When there are multiple ways, this check must happen in parallel within each way, which then passes

its result into a multiplexor which outputs a final hit or miss result. As describe above, the more asso-

ciative a cache is, the less bits are required for index and the more as tag bits — to the extreme of a

fully-associative cache where no bits are used as index bits. The parallel matching of tags bits is the

expensive component of cache design and generally the limiting factor on how many lines (i.e, how

big) a cache may grow.

3. Peripherals and buses

Peripherals are any of the many external devices that connect to your computer. Obviously, the proces-

sor must have some way of talking to the peripherals to make them useful.

The communication channel between the processor and the peripherals is called a bus.

Computer Science from the Bottom Up

80

3.1. Peripheral Bus concepts
A device requires both input and output to be useful. There are a number of common concepts re-

quired for useful communication with peripherals.

3.1.1. Interrupts

An interrupt allows the device to literally interrupt the processor to flag some information. For exam-

ple, when a key is pressed, an interrupt is generated to deliver the key-press event to the operating sys-

tem. Each device is assigned an interrupt by some combination of the operating system and BIOS.

Devices are generally connected to an programmable interrupt controller (PIC), a separate chip that is

part of the motherboard which buffers and communicates interrupt information to the main processor.

Each device has a physical interrupt line between it an one of the PIC's provided by the system. When

the device wants to interrupt, it will modify the voltage on this line.

A very broad description of the PIC's role is that it receives this interrupt and converts it to a message

for consumption by the main processor. While the exact procedure varies by architecture, the general

principle is that the operating system has configured an interrupt descriptor table which pairs each of

the possible interrupts with a code address to jump to when the interrupt is received. This is illustrated

in Figure 3.6, “Overview of handling an interrupt”.

Writing this interrupt handler is the job of the device driver author in conjunction with the operating

system.

PIC

IDT

CPU

Device

A generic overview of handling an interrupt. The device raises the interrupt to the interrupt controller,

Computer Science from the Bottom Up

81

which passes the information onto the processor. The processor looks at its descriptor table, filled out by

the operating system, to find the code to handle the fault.

Figure 3.6. Overview of handling an interrupt

Most drivers will split up handling of interrupts into bottom and top halves. The bottom half will ac-

knowledge the interrupt, queue actions for processing and return the processor to what it was doing

quickly. The top half will then run later when the CPU is free and do the more intensive processing.

This is to stop an interrupt hogging the entire CPU.

3.1.1.1. Saving state

Since an interrupt can happen at any time, it is important that you can return to the running operation

when finished handling the interrupt. It is generally the job of the operating system to ensure that upon

entry to the interrupt handler, it saves any state; i.e. registers, and restores them when returning from

the interrupt handler. In this way, apart from some lost time, the interrupt is completely transparent to

whatever happens to be running at the time.

3.1.1.2. Interrupts v traps and exceptions

While an interrupt is generally associated with an external event from a physical device, the same

mechanism is useful for handling internal system operations. For example, if the processor detects

conditions such as an access to invalid memory, an attempt to divide-by-zero or an invalid instruction,

it can internally raise an exception to be handled by the operating system. It is also the mechanism

used to trap into the operating system for system calls, as discussed in Section 3, “System Calls” and

to implement virtual memory, as discussed in Chapter 6, Virtual Memory. Although generated inter-

nally rather than from an external source, the principles of asynchronously interrupting the running

code remains the same.

3.1.1.3. Types of interrupts

There are two main ways of signalling interrupts on a line — level and edge triggered.

Level-triggered interrupts define voltage of the interrupt line being held high to indicate an interrupt is

pending. Edge-triggered interrupts detect transitions on the bus; that is when the line voltage goes

from low to high. With an edge-triggered interrupt, a square-wave pulse is detected by the PIC as sig-

nalling and interrupt has been raised.

The difference is pronounced when devices share an interrupt line. In a level-triggered system, the in-

terrupt line will be high until all devices that have raised an interrupt have been processed and un-as-

Computer Science from the Bottom Up

82

serted their interrupt.

In an edge-triggered system, a pulse on the line will indicate to the PIC that an interrupt has occurred,

which it will signal to the operating system for handling. However, if further pulses come in on the al-

ready asserted line from another device.

The issue with level-triggered interrupts is that it may require some considerable amount of time to

handle an interrupt for a device. During this time, the interrupt line remains high and it is not possible

to determine if any other device has raised an interrupt on the line. This means there can be consider-

able unpredictable latency in servicing interrupts.

With edge-triggered interrupts, a long-running interrupt can be noticed and queued, but other devices

sharing the line can still transition (and hence raise interrupts) while this happens. However, this intro-

duces new problems; if two devices interrupt at the same time it may be possible to miss one of the in-

terrupts, or environmental or other interference may create a spurious interrupt which should be ig-

nored.

3.1.1.4. Non-maskable interrupts

It is important for the system to be able to mask or prevent interrupts at certain times. Generally, it is

possible to put interrupts on hold, but a particular class of interrupts, called non-maskable interrupts

(NMI), are the exception to this rule. The typical example is the reset interrupt.

NMIs can be useful for implementing things such as a system watchdog, where a NMI is raised peri-

odically and sets some flag that must be acknowledged by the operating system. If the acknowledge-

ment is not seen before the next periodic NMI, then system can be considered to be not making for-

ward progress. Another common usage is for profiling a system. A periodic NMI can be raised and

used to evaluate what code the processor is currently running; over time this builds a profile of what

code is being run and create a very useful insight into system performance.

3.1.2. IO Space

Obviously the processor will need to communicate with the peripheral device, and it does this via IO

operations. The most common form of IO is so called memory mapped IO where registers on the de-

vice are mapped into memory.

This means that to communicate with the device, you need simply read or write to a specific address in

memory. TODO: expand

Computer Science from the Bottom Up

83

3.2. DMA
Since the speed of devices is far below the speed of processors, there needs to be some way to avoid

making the CPU wait around for data from devices.

Direct Memory Access (DMA) is a method of transferring data directly between an peripheral and

system RAM.

The driver can setup a device to do a DMA transfer by giving it the area of RAM to put its data into. It

can then start the DMA transfer and allow the CPU to continue with other tasks.

Once the device is finished, it will raise an interrupt and signal to the driver the transfer is complete.

From this time the data from the device (say a file from a disk, or frames from a video capture card) is

in memory and ready to be used.

3.3. Other Buses
Other buses connect between the PCI bus and external devices.

3.3.1. USB

From an operating system point of view, a USB device is a group of end-points grouped together into

an interface. An end-point can be either in or out and hence transfers data in one direction only. End-

points can have a number of different types:

• Control end-points are for configuring the device, etc.

• Interrupt end-points are for transferring small amounts of data. They have higher priority

than ...

• Bulk end-points, which transfer large amounts of data but do not get guaranteed time con-

straints.

• Isochronous transfers are high-priority real-time transfers, but if they are missed they are not

re-tried. This is for streaming data like video or audio where there is no point sending data

again.

There can be many interfaces (made of multiple end-points) and interfaces are grouped into configura-

tions. However most devices only have a single configuration.

Computer Science from the Bottom Up

84

B a s e In d e x

2111231

Frame
Counte r

Frame Lis t

Is ochronous
Trans fer Des criptors

Horizonta l Execution

Queue Heads

Execution By Breadth
(Horizonta l Execution)

Execution
By Depth
(Vertica l
Execution)

Link
Pointer

Element
Link
Pointer

Link
Pointer

Element
Link
Pointer

Element
Link
Pointer

TQ

TQ

TQ

Frame Pointe r

Frame Pointe r

Frame Pointe r

Q=Trans fe r Descriptor or Queue Head
T=Termina te

Frame Lis t Base
Address Regis te r

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD T D TD

TD T D TD Q HQ HQ H

00

Link
Pointer

Element
Link
Pointer

TD

TD

TD

Q H

TD

TD

TD

TQFrame Pointe r

TD T D TD

Inte rrupt Control and Bulk

Queue Heads

An overview of a UCHI controller, taken from Intel documentation.

Figure 3.7. Overview of a UHCI controller operation

Figure 3.7, “Overview of a UHCI controller operation” shows an overview of a universal host con-

troller interface, or UHCI. It provides an overview of how USB data is moved out of the system by a

combination of hardware and software. Essentially, the software sets up a template of data in a speci-

fied format for the host controller to read and send across the USB bus.

Starting at the top-left of the overview, the controller has a frame register with a counter which is in-

cremented periodically — every millisecond. This value is used to index into a frame list created by

software. Each entry in this table points to a queue of transfer descriptors. Software sets up this data in

memory, and it is read by the host controller which is a separate chip the drives the USB bus. Software

needs to schedule the work queues so that 90% of a frame time is given to isochronous data, and 10%

left for interrupt, control and bulk data..

As you can see from the diagram, the way the data is linked means that transfer descriptors for

isochronous data are associated with only one particular frame pointer — in other words only one par-

ticular time period — and after that will be discarded. However, the interrupt, control and bulk data are

all queued after the isochronous data and thus if not transmitted in one frame (time period) will be

done in the next.

Computer Science from the Bottom Up

85

http://download.intel.com/technology/usb/UHCI11D.pdf

The USB layer communicates through USB request blocks, or URBs. A URB contains information

about what end-point this request relates to, data, any related information or attributes and a call-back

function to be called when the URB is complete. USB drivers submit URBs in a fixed format to the

USB core, which manages them in co-ordination with the USB host controller as above. Your data gets

sent off to the USB device by the USB core, and when its done your call-back is triggered.

4. Small to big systems

As Moore's law has predicted, computing power has been growing at a furious pace and shows no

signs of slowing down. It is relatively uncommon for any high end servers to contain only a single

CPU. This is achieved in a number of different fashions.

4.1. Symmetric Multi-Processing
Symmetric Multi-Processing, commonly shortened to SMP, is currently the most common configura-

tion for including multiple CPUs in a single system.

The symmetric term refers to the fact that all the CPUs in the system are the same (e.g. architecture,

clock speed). In a SMP system there are multiple processors that share other all other system resources

(memory, disk, etc).

4.1.1. Cache Coherency

For the most part, the CPUs in the system work independently; each has its own set of registers, pro-

gram counter, etc. Despite running separately, there is one component that requires strict synchronisa-

tion.

This is the CPU cache; remember the cache is a small area of quickly accessible memory that mirrors

values stored in main system memory. If one CPU modifies data in main memory and another CPU

has an old copy of that memory in its cache the system will obviously not be in a consistent state. Note

that the problem only occurs when processors are writing to memory, since if a value is only read the

data will be consistent.

To co-ordinate keeping the cache coherent on all processors an SMP system uses snooping. Snooping

is where a processor listens on a bus which all processors are connected to for cache events, and up-

dates its cache accordingly.

Computer Science from the Bottom Up

86

One protocol for doing this is the MOESI protocol; standing for Modified, Owner, Exclusive, Shared,

Invalid. Each of these is a state that a cache line can be in on a processor in the system. There are other

protocols for doing as much, however they all share similar concepts. Below we examine MOESI so

you have an idea of what the process entails.

When a processor requires reading a cache line from main memory, it firstly has to snoop all other

processors in the system to see if they currently know anything about that area of memory (e.g. have it

cached). If it does not exist in any other process, then the processor can load the memory into cache

and mark it as exclusive. When it writes to the cache, it then changes state to be modified. Here the

specific details of the cache come into play; some caches will immediately write back the modified

cache to system memory (known as a write-through cache, because writes go through to main memo-

ry). Others will not, and leave the modified value only in the cache until it is evicted, when the cache

becomes full for example.

The other case is where the processor snoops and finds that the value is in another processors cache. If

this value has already been marked as modified, it will copy the data into its own cache and mark it as

shared. It will send a message for the other processor (that we got the data from) to mark its cache line

as owner. Now imagine that a third processor in the system wants to use that memory too. It will

snoop and find both a shared and a owner copy; it will thus take its value from the owner value. While

all the other processors are only reading the value, the cache line stays shared in the system. However,

when one processor needs to update the value it sends an invalidate message through the system. Any

processors with that cache line must then mark it as invalid, because it not longer reflects the "true"

value. When the processor sends the invalidate message, it marks the cache line as modified in its

cache and all others will mark as invalid (note that if the cache line is exclusive the processor knows

that no other processor is depending on it so can avoid sending an invalidate message).

From this point the process starts all over. Thus whichever processor has the modified value has the re-

sponsibility of writing the true value back to RAM when it is evicted from the cache. By thinking

through the protocol you can see that this ensures consistency of cache lines between processors.

There are several issues with this system as the number of processors starts to increase. With only a

few processors, the overhead of checking if another processor has the cache line (a read snoop) or in-

validating the data in every other processor (invalidate snoop) is manageable; but as the number of

processors increase so does the bus traffic. This is why SMP systems usually only scale up to around 8

processors.

Having the processors all on the same bus starts to present physical problems as well. Physical proper-

ties of wires only allow them to be laid out at certain distances from each other and to only have cer-

Computer Science from the Bottom Up

87

tain lengths. With processors that run at many gigahertz the speed of light starts to become a real con-

sideration in how long it takes messages to move around a system.

Note that system software usually has no part in this process, although programmers should be aware

of what the hardware is doing underneath in response to the programs they design to maximise perfor-

mance.

4.1.1.1. Cache exclusivity in SMP systems

In Section 2.2, “Cache in depth” we described inclusive v exclusive caches. In general, L1 caches are

usually inclusive — that is all data in the L1 cache also resides in the L2 cache. In a multiprocessor

system, an inclusive L1 cache means that only the L2 cache need snoop memory traffic to maintain

coherency, since any changes in L2 will be guaranteed to be reflected by L1. This reduces the com-

plexity of the L1 and de-couples it from the snooping process allowing it to be faster.

Again, in general, most all modern high-end (e.g. not targeted at embedded) processors have a write-

through policy for the L1 cache, and a write-back policy for the lower level caches. There are several

reasons for this. Since in this class of processors L2 caches are almost exclusively on-chip and gener-

ally quite fast the penalties from having L1 write-through are not the major consideration. Further,

since L1 sizes are small, pools of written data unlikely to be read in the future could cause pollution of

the limited L1 resource. Additionally, a write-through L1 does not have to be concerned if it has out-

standing dirty data, hence can pass the extra coherency logic to the L2 (which, as we mentioned, al-

ready has a larger part to play in cache coherency).

4.1.2. Hyperthreading

Much of the time of a modern processor is spent waiting for much slower devices in the memory hier-

archy to deliver data for processing.

Thus strategies to keep the pipeline of the processor full are paramount. One strategy is to include

enough registers and state logic such that two instruction streams can be processed at the same time.

This makes one CPU look for all intents and purposes like two CPUs.

While each CPU has its own registers, they still have to share the core logic, cache and input and out-

put bandwidth from the CPU to memory. So while two instruction streams can keep the core logic of

the processor busier, the performance increase will not be as great has having two physically separate

CPUs. Typically the performance improvement is below 20% (XXX check), however it can be drasti-

cally better or worse depending on the workloads.

Computer Science from the Bottom Up

88

4.1.3. Multi Core

With increased ability to fit more and more transistors on a chip, it became possible to put two or more

processors in the same physical package. Most common is dual-core, where two processor cores are in

the same chip. These cores, unlike hyperthreading, are full processors and so appear as two physically

separate processors a la a SMP system.

While generally the processors have their own L1 cache, they do have to share the bus connecting to

main memory and other devices. Thus performance is not as great as a full SMP system, but consider-

ably better than a hyperthreading system (in fact, each core can still implement hyperthreading for an

additional enhancement).

Multi core processors also have some advantages not performance related. As we mentioned, external

physical buses between processors have physical limits; by containing the processors on the same

piece of silicon extremely close to each other some of these problems can be worked around. The

power requirements for multi core processors are much less than for two separate processors. This

means that there is less heat needing to be dissipated which can be a big advantage in data centre ap-

plications where computers are packed together and cooling considerations can be considerable. By

having the cores in the same physical package it makes muti-processing practical in applications

where it otherwise would not be, such as laptops. It is also considerably cheaper to only have to pro-

duce one chip rather than two.

4.2. Clusters
Many applications require systems much larger than the number of processors a SMP system can scale

to. One way of scaling up the system further is a cluster.

A cluster is simply a number of individual computers which have some ability to talk to each other. At

the hardware level the systems have no knowledge of each other; the task of stitching the individual

computers together is left up to software.

Software such as MPI allow programmers to write their software and then "farm out" parts of the pro-

gram to other computers in the system. For example, image a loop that executes several thousand

times performing independent action (that is no iteration of the loop affects any other iteration). With

four computers in a cluster, the software could make each computer do 250 loops each.

The interconnect between the computers varies, and may be as slow as an internet link or as fast as

dedicated, special buses (Infiniband). Whatever the interconnect, however, it is still going to be further

Computer Science from the Bottom Up

89

down the memory hierarchy and much, much slower than RAM. Thus a cluster will not perform well

in a situation when each CPU requires access to data that may be stored in the RAM of another com-

puter; since each time this happens the software will need to request a copy of the data from the other

computer, copy across the slow link and into local RAM before the processor can get any work done.

However, many applications do not require this constant copying around between computers. One

large scale example is SETI@Home, where data collected from a radio antenna is analysed for signs

of Alien life. Each computer can be distributed a few minutes of data to analyse, and only needs report

back a summary of what it found. SETI@Home is effectively a very large, dedicated cluster.

Another application is rendering of images, especially for special effects in films. Each computer can

be handed a single frame of the movie which contains the wire-frame models, textures and light

sources which needs to be combined (rendered) into the amazing special effects we now take for

grained. Since each frame is static, once the computer has the initial input it does not need any more

communication until the final frame is ready to be sent back and combined into the move. For example

the block-buster Lord of the Rings had their special effects rendered on a huge cluster running Linux.

4.3. Non-Uniform Memory Access
Non-Uniform Memory Access, more commonly abbreviated to NUMA, is almost the opposite of a

cluster system mentioned above. As in a cluster system it is made up of individual nodes linked to-

gether, however the linkage between nodes is highly specialised (and expensive!). As opposed to a

cluster system where the hardware has no knowledge of the linkage between nodes, in a NUMA sys-

tem the software has no (well, less) knowledge about the layout of the system and the hardware does

all the work to link the nodes together.

The term non uniform memory access comes from the fact that RAM may not be local to the CPU and

so data may need to be accessed from a node some distance away. This obviously takes longer, and is

in contrast to a single processor or SMP system where RAM is directly attached and always takes a

constant (uniform) time to access.

4.3.1. NUMA Machine Layout

With so many nodes talking to each other in a system, minimising the distance between each node is

of paramount importance. Obviously it is best if every single node has a direct link to every other node

as this minimises the distance any one node needs to go to find data. This is not a practical situation

when the number of nodes starts growing into the hundreds and thousands as it does with large super-

Computer Science from the Bottom Up

90

computers; if you remember your high school maths the problem is basically a combination taken two

at a time (each node talking to another), and will grow n!/2*(n-2)! .

To combat this exponential growth alternative layouts are used to trade off the distance between nodes

with the interconnects required. One such layout common in modern NUMA architectures is the hy-

percube.

A hypercube has a strict mathematical definition (way beyond this discussion) but as a cube is a 3 di-

mensional counterpart of a square, so a hypercube is a 4 dimensional counterpart of a cube.

Computer Science from the Bottom Up

91

An example of a hypercube. Hypercubes provide a good trade off between distance between nodes and

number of interconnections required.

Figure 3.8. A Hypercube

Above we can see the outer cube contains four 8 nodes. The maximum number of paths required for

any node to talk to another node is 3. When another cube is placed inside this cube, we now have dou-

ble the number of processors but the maximum path cost has only increased to 4. This means as the

number of processors grow by 2n the maximum path cost grows only linearly.

4.3.2. Cache Coherency

Cache coherency can still be maintained in a NUMA system (this is referred to as a cache-coherent

NUMA system, or ccNUMA). As we mentioned, the broadcast based scheme used to keep the proces-

sor caches coherent in an SMP system does not scale to hundreds or even thousands of processors in a

large NUMA system. One common scheme for cache coherency in a NUMA system is referred to as a

directory based model. In this model processors in the system communicate to special cache directory

hardware. The directory hardware maintains a consistent picture to each processor; this abstraction

hides the working of the NUMA system from the processor.

The Censier and Feautrier directory based scheme maintains a central directory where each memory

block has a flag bit known as the valid bit for each processor and a single dirty bit. When a processor

reads the memory into its cache, the directory sets the valid bit for that processor.

When a processor wishes to write to the cache line the directory needs to set the dirty bit for the mem-

ory block. This involves sending an invalidate message to those processors who are using the cache

line (and only those processors whose flag are set; avoiding broadcast traffic).

After this should any other processor try to read the memory block the directory will find the dirty bit

set. The directory will need to get the updated cache line from the processor with the valid bit current-

ly set, write the dirty data back to main memory and then provide that data back to the requesting

processor, setting the valid bit for the requesting processor in the process. Note that this is transparent

to the requesting processor and the directory may need to get that data from somewhere very close or

somewhere very far away.

Obviously having thousands of processors communicating to a single directory does also not scale

well. Extensions to the scheme involve having a hierarchy of directories that communicate between

each other using a separate protocol. The directories can use a more general purpose communications

Computer Science from the Bottom Up

92

network to talk between each other, rather than a CPU bus, allowing scaling to much larger systems.

4.3.3. NUMA Applications

NUMA systems are best suited to the types of problems that require much interaction between proces-

sor and memory. For example, in weather simulations a common idiom is to divide the environment

up into small "boxes" which respond in different ways (oceans and land reflect or store different

amounts of heat, for example). As simulations are run, small variations will be fed in to see what the

overall result is. As each box influences the surrounding boxes (e.g. a bit more sun means a particular

box puts out more heat, affecting the boxes next to it) there will be much communication (contrast that

with the individual image frames for a rendering process, each of which does not influence the other).

A similar process might happen if you were modelling a car crash, where each small box of the simu-

lated car folds in some way and absorbs some amount of energy.

Although the software has no directly knowledge that the underlying system is a NUMA system, pro-

grammers need to be careful when programming for the system to get maximum performance. Obvi-

ously keeping memory close to the processor that is going to use it will result in the best performance.

Programmers need to use techniques such as profiling to analyse the code paths taken and what conse-

quences their code is causing for the system to extract best performance.

4.4. Memory ordering, locking and atomic operations
The multi-level cache, superscalar multi-processor architecture brings with it some interesting issues

relating to how a programmer sees the processor running code.

Imagine program code is running on two processors simultaneously, both processors sharing effective-

ly one large area of memory. If one processor issues a store instruction, to put a register value into

memory, when can it be sure that the other processor does a load of that memory it will see the correct

value?

In the simplest situation the system could guarantee that if a program executes a store instruction, any

subsequent load instructions will see this value. This is referred to as strict memory ordering, since the

rules allow no room for movement. You should be starting to realise why this sort of thing is a serious

impediment to performance of the system.

Much of the time, the memory ordering is not required to be so strict. The programmer can identify

points where they need to be sure that all outstanding operations are seen globally, but in between

these points there may be many instructions where the semantics are not important.

Computer Science from the Bottom Up

93

Take, for example, the following situation.

1 typedef struct {

int a;

int b;

} a_struct;

5

/*

* Pass in a pointer to be allocated as a new structure

*/

void get_struct(a_struct *new_struct)

10 {

void *p = malloc(sizeof(a_struct));

/* We don't particularly care what order the following two

* instructions end up acutally executing in */

15 p->a = 100;

p->b = 150;

/* However, they must be done before this instruction.

* Otherwise, another processor who looks at the value of p

Computer Science from the Bottom Up

94

20 * could find it pointing into a structure whose values have

* not been filled out.

*/

new_struct = p;

}

Example 3.1. Memory Ordering

In this example, we have two stores that can be done in any particular order, as it suits the processor.

However, in the final case, the pointer must only be updated once the two previous stores are known to

have been done. Otherwise another processor might look at the value of p , follow the pointer to the

memory, load it, and get some completely incorrect value!

To indicate this, loads and stores have to have semantics that describe what behaviour they must have.

Memory semantics are described in terms of fences that dictate how loads and stores may be reordered

around the load or store.

By default, a load or store can be re-ordered anywhere.

Acquire semantics is like a fence that only allows load and stores to move downwards through it. That

is, when this load or store is complete you can be guaranteed that any later load or stores will see the

value (since they can not be moved above it).

Release semantics is the opposite, that is a fence that allows any load or stores to be done before it

(move upwards), but nothing before it to move downwards past it. Thus, when load or store with re-

lease semantics is processed, you can be store that any earlier load or stores will have been complete.

Computer Science from the Bottom Up

95

Store

Load

Load

Load

Store

Store

Load

Store

Store

Load

Load

Load

Load

All later operations must be able to
see the result of this operation.

All ealier operations must be complete
before this operation completes.

Invalid Reordering

Valid Reordering

Store

Load

Acquire

Release

An illustration of valid reorderings around operations with acquire and release semantics.

Figure 3.9. Acquire and Release semantics

A full memory fence is a combination of both; where no loads or stores can be reordered in any direc-

tion around the current load or store.

The strictest memory model would use a full memory fence for every operation. The weakest model

would leave every load and store as a normal re-orderable instruction.

Computer Science from the Bottom Up

96

4.4.1. Processors and memory models

Different processors implement different memory models.

The x86 (and AMD64) processor has a quite strict memory model; all stores have release semantics

(that is, the result of a store is guaranteed to be seen by any later load or store) but all loads have nor-

mal semantics. lock prefix gives memory fence.

Itanium allows all load and stores to be normal, unless explicitly told. XXX

4.4.2. Locking

Knowing the memory ordering requirements of each architecture is not practical for all programmers,

and would make programs difficult to port and debug across different processor types.

Programmers use a higher level of abstraction called locking to allow simultaneous operation of pro-

grams when there are multiple CPUs.

When a program acquires a lock over a piece of code, no other processor can obtain the lock until it is

released. Before any critical pieces of code, the processor must attempt to take the lock; if it can not

have it, it does not continue.

You can see how this is tied into the naming of the memory ordering semantics in the previous section.

We want to ensure that before we acquire a lock, no operations that should be protected by the lock are

re-ordered before it. This is how acquire semantics works.

Conversely, when we release the lock, we must be sure that every operation we have done whilst we

held the lock is complete (remember the example of updating the pointer previously?). This is release

semantics.

There are many software libraries available that allow programmers to not have to worry about the de-

tails of memory semantics and simply use the higher level of abstraction of lock() and unlock() .

4.4.2.1. Locking difficulties

Locking schemes make programming more complicated, as it is possible to deadlock programs. Imag-

ine if one processor is currently holding a lock over some data, and is currently waiting for a lock for

some other piece of data. If that other processor is waiting for the lock the first processor holds before

unlocking the second lock, we have a deadlock situation. Each processor is waiting for the other and

neither can continue without the others lock.

Computer Science from the Bottom Up

97

Often this situation arises because of a subtle race condition; one of the hardest bugs to track down. If

two processors are relying on operations happening in a specific order in time, there is always the pos-

sibility of a race condition occurring. A gamma ray from an exploding star in a different galaxy might

hit one of the processors, making it skip a beat, throwing the ordering of operations out. What will of-

ten happen is a deadlock situation like above. It is for this reason that program ordering needs to be en-

sured by semantics, and not by relying on one time specific behaviours. (XXX not sure how i can bet-

ter word that).

A similar situation is the opposite of deadlock, called livelock. One strategy to avoid deadlock might

be to have a "polite" lock; one that you give up to anyone who asks. This politeness might cause two

threads to be constantly giving each other the lock, without either ever taking the lock long enough to

get the critical work done and be finished with the lock (a similar situation in real life might be two

people who meet at a door at the same time, both saying "no, you first, I insist". Neither ends up going

through the door!).

4.4.2.2. Locking strategies

Underneath, there are many different strategies for implementing the behaviour of locks.

A simple lock that simply has two states - locked or unlocked, is referred to as a mutex (short for mu-

tual exclusion; that is if one person has it the other can not have it).

There are, however, a number of ways to implement a mutex lock. In the simplest case, we have what

its commonly called a spinlock. With this type of lock, the processor sits in a tight loop waiting to take

the lock; equivalent to it saying "can I have it now" constantly much as a young child might ask of a

parent.

The problem with this strategy is that it essentially wastes time. Whilst the processor is sitting con-

stantly asking for the lock, it is not doing any useful work. For locks that are likely to be only held

locked for a very short amount of time this may be appropriate, but in many cases the amount of time

the lock is held might be considerably longer.

Thus another strategy is to sleep on a lock. In this case, if the processor can not have the lock it will

start doing some other work, waiting for notification that the lock is available for use (we see in future

chapters how the operating system can switch processes and give the processor more work to do).

A mutex is however just a special case of a semaphore, famously invented by the Dutch computer sci-

entist Dijkstra. In a case where there are multiple resources available, a semaphore can be set to count

accesses to the resources. In the case where the number of resources is one, you have a mutex. The op-

Computer Science from the Bottom Up

98

eration of semaphores can be detailed in any algorithms book.

These locking schemes still have some problems however. In many cases, most people only want to

read data which is updated only rarely. Having all the processors wanting to only read data require tak-

ing a lock can lead to lock contention where less work gets done because everyone is waiting to obtain

the same lock for some data.

4.4.3. Atomic Operations

Explain what it is.

Chapter 4. The Operating System

1. The role of the operating system

The operating system underpins the entire operation of the modern computer.

1.1. Abstraction of hardware
The fundamental operation of the operating system (OS) is to abstract the hardware to the programmer

and user. The operating system provides generic interfaces to services provided by the underlying

hardware.

In a world without operating systems, every programmer would need to know the most intimate details

of the underlying hardware to get anything to run. Worse still, their programs would not run on other

hardware, even if that hardware has only slight differences.

1.2. Multitasking
We expect modern computers to do many different things at once, and we need some way to arbitrate

between all the different programs running on the system. It is the operating systems job to allow this

to happen seamlessly.

The operating system is responsible for resource management within the system. Many tasks will be

competing for the resources of the system as it runs, including processor time, memory, disk and user

input. The job of the operating system is to arbitrate these resources to the multiple tasks and allow

them access in an orderly fashion. You have probably experienced when this fails as it usually ends up

Computer Science from the Bottom Up

99

with your computer crashing (the famous "blue screen of death" for example).

1.3. Standardised Interfaces
Programmers want to write programs that will run on as many different hardware platforms as possi-

ble. By having operating system support for standardised interfaces, programmers can get this func-

tionality.

For example, if the function to open a file on one system is open() , on another is open_file()

and on yet another openf() programmers will have the dual problem of having to remember what

each system does and their programs will not work on multiple systems.

The Portable Operating System Interface (POSIX)1

The X comes from Unix, from which the standard grew. Today, POSIX is the same thing as the Single

UNIX Specification Version 3 or ISO/IEC 9945:2002. This is a free standard, available online.

Once upon a time, the Single UNIX specification and the POSIX Standards were separate entities. The

Single UNIX specification was released by a consortium called the "Open Group", and was freely

available as per their requirements. The latest version is The Single Unix Specification Version 3.

The IEEE POSIX standards were released as IEEE Std 1003.[insert various years, revisions here], and

were not freely available. The latest version is IEEE 1003.1-2001 and is equivalent to the Single Unix

Specification Version 3.

Thus finally the two separate standards were merged into what is known as the Single UNIX Specifi-

cation Version 3, which is also standardised by the ISO under ISO/IEC 9945:2002. This happened ear-

ly in 2002. So when people talk about POSIX, SUS3 or ISO/IEC 9945:2002 they all mean the same

thing!

is a very important standard implemented by UNIX type operating systems. Microsoft Windows has

similar proprietary standards.

1.4. Security
On multi-user systems, security is very important. As the arbitrator of access to the system the operat-

ing system is responsible for ensuring that only those with the correct permissions can access re-

1.

Computer Science from the Bottom Up

100

sources.

For example if a file is owned by one user, another user should not be allowed to open and read it.

However there also need to be mechanisms to share that file safely between the users should they want

it.

Operating systems are large and complex programs, and often security issues will be found. Often a

virus or worm will take advantage of these bugs to access resources it should not be allowed to, such

as your files or network connection; to fight them you must install patches or updates provided by

your operating system vendor.

1.5. Performance
As the operating system provides so many services to the computer, its performance is critical. Many

parts of the operating system run extremely frequently, so even an overhead of just a few processor cy-

cles can add up to a big decrease in overall system performance.

The operating system needs to exploit the features of the underlying hardware to make sure it is get-

ting the best possible performance for the operations, and consequently systems programmers need to

understand the intimate details of the architecture they are building for.

In many cases the systems programmers job is about deciding on policies for the system. Often the

case that the side effects of making one part of the operating system run faster will make another part

run slower or less efficiently. Systems programmers need to understand all these trade offs when they

are building their operating system.

2. Operating System Organisation

The operating system is roughly organised as in the figure below.

Computer Science from the Bottom Up

101

Ta
sk

 1

Ta
sk

 n
Kernel

Userspace

Ta
sk

 1

Drivers

Hardware

The organisation of the kernel. Processes the kernel is running live in userspace, and the kernel talks

both directly to hardware and through drivers.

Figure 4.1. The Operating System

2.1. The Kernel
The kernel is the operating system. As the figure illustrates, the kernel communicates to hardware both

directly and through drivers.

Just as the kernel abstracts the hardware to user programs, drivers abstract hardware to the kernel. For

example there are many different types of graphic card, each one with slightly different features. As

Computer Science from the Bottom Up

102

long as the kernel exports an API, people who have access to the specifications for the hardware can

write drivers to implement that API. This way the kernel can access many different types of hardware.

The kernel is generally what we called privileged. As you will learn, the hardware has important roles

to play in running multiple tasks and keeping the system secure, but these rules do not apply to the

kernel. We know that the kernel must handle programs that crash (remember it is the operating sys-

tem's job arbitrate between multiple programs running on the same system, and there is no guarantee

that they will behave), but if any internal part of the operating system crashes, chances are the entire

system will become useless. Similarly security issues can be exploited by user processes to escalate

themselves to the privilege level of the kernel; at that point they can access any part of the system

completely unchecked.

2.1.1. Monolithic v Microkernels

One debate that is often comes up surrounding operating systems is whether the kernel should be a mi-

crokernel or monolithic.

The monolithic approach is the most common, as taken by most common Unixes (such as Linux). In

this model the core privileged kernel is large, containing hardware drivers, file system accesses con-

trols, permissions checking and services such as Network File System (NFS).

Since the kernel is always privileged, if any part of it crashes the whole system has the potential to

come to a halt. If one driver has a bug, it can overwrite any memory in the system with no problems,

ultimately causing the system to crash.

A microkernel architecture tries to minimise this possibility by making the privileged part of the ker-

nel as small as possible. This means that most of the system runs as unprivileged programs, limiting

the harm that any one crashing component can influence. For example, drivers for hardware can run in

separate processes, so if one goes astray it can not overwrite any memory but that allocated to it.

Whilst this sounds like the most obvious idea, the problem comes back two main issues

1. Performance is decreased. Talking between many different components can decrease perfor-

mance.

2. It is slightly more difficult for the programmer.

Both of these criticisms come because to keep separation between components most microkernels are

implemented with a message passing based system, commonly referred to as inter-process communi-

Computer Science from the Bottom Up

103

cation or IPC. Communicating between individual components happens via discrete messages which

must be bundled up, sent to the other component, unbundled, operated upon, re-bundled up and sent

back, and then unbundled again to get the result.

This is a lot of steps for what might be a fairly simple request from a foreign component. Obviously

one request might make the other component do more requests of even more components, and the

problem can multiply. Slow message passing implementations were largely responsible for the poor

performance of early microkernel systems, and the concepts of passing messages are slightly harder

for programmers to program for. The enhanced protection from having components run separately was

not sufficient to overcome these hurdles in early microkernel systems, so they fell out of fashion.

In a monolithic kernel, calls between components are simple function calls, as all programmers are fa-

miliar with.

There is no definitive answer as to which is the best organisation, and it has started many arguments in

both academic and non-academic circles. Hopefully as you learn more about operating systems you

will be able to make up your own mind!

2.1.1.1. Modules

The Linux kernel implements a module system, where drivers can be loaded into the running kernel

"on the fly" as they are required. This is good in that drivers, which make up a large part of operating

system code, are not loaded for devices that are not present in the system. Someone who wants to

make the most generic kernel possible (i.e. runs on lots of different hardware, such as RedHat or De-

bian) can include most drivers as modules which are only loaded if the system it is running on has the

hardware available.

However, the modules are loaded directly in the privileged kernel and operate at the same privilege

level as the rest of the kernel, so the system is still considered a monolithic kernel.

2.1.2. Virtualisation

Closely related to kernel is the concept of virtualisation of hardware. Modern computers are very pow-

erful, and often it is useful to not think of them as one whole system but split a single physical com-

puter up into separate "virtual" machines. Each of these virtual machines looks for all intents and pur-

poses as a completely separate machine, although physically they are all in the same box, in the same

place.

Computer Science from the Bottom Up

104

Memory

Memory CPUs Disk

Operating System

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

Application

Virtual
Hardware

O
perating System

G
uest

Application

Virtual
Hardware

Memory CPUs Disk

A
pplication

Virtual Machine Monitor

Some different virtualisation methods.

Figure 4.2. The Operating System

This can be organised in many different ways. In the simplest case, a small virtual machine monitor

can run directly on the hardware and provide an interface to the guest operating systems running on

Computer Science from the Bottom Up

105

top. This VMM is often often called a hypervisor (from the word "supervisor")1. In fact, the operating

system on top may have no idea that the hypervisor is even there at all, as the hypervisor presents what

appears to be a complete system. It intercepts operations between the guest operating system and hard-

ware and only presents a subset of the system resources to each.

This is often used on large machines (with many CPUs and much RAM) to implement partitioning.

This means the machine can be split up into smaller virtual machines. Often you can allocate more re-

sources to running systems on the fly, as requirements dictate. The hypervisors on many large IBM

machines are actually quite complicated affairs, with many millions of lines of code. It provides a mul-

titude of system management services.

Another option is to have the operating system be aware of the underlying hypervisor, and request sys-

tem resources through it. This is sometimes referred to as paravirtualisation due to its halfway nature.

This is similar to the way early versions of the Xen system work and is a compromise solution. It

hopefully provides better performance since the operating system is explicitly asking for system re-

sources from the hypervisor when required, rather than the hypervisor having to work things out dy-

namically.

Finally, you may have a situation where an application running on top of the existing operating system

presents a virtualised system (including CPU, memory, BIOS, disk, etc) which a plain operating sys-

tem can run on. The application converts the requests to hardware through to the underlying hardware

via the existing operating system. This is similar to how VMWare works. This approach has many

overheads, as the application process has to emulate an entire system and convert everything to re-

quests from the underlying operating system. However, this lets you emulate an entirely different ar-

chitecture all together, as you can dynamically translate the instructions from one processor type to an-

other (as the Rosetta system does with Apple software which moved from the PowerPC processor to

Intel based processors).

Performance is major concern when using any of these virtualisation techniques, as what were once

fast operations directly on hardware need to make their way through layers of abstraction.

Intel have discussed hardware support for virtualisation soon to be coming in their latest processors.

These extensions work by raising a special exception for operations that might require the intervention

of a virtual machine monitor. Thus the processor looks the same as a non-virtualised processor to the

application running on it, but when that application makes requests for resources that might be shared

1. In fact, the hypervisor shares much in common with a micro-kernel; both strive to be small layers to

present the hardware in a safe fashion to layers above it.

Computer Science from the Bottom Up

106

between other guest operating systems, the virtual machine monitor can be invoked.

This provides superior performance because the virtual machine monitor does not need to monitor

every operation to see if it is safe, but can wait until the processor notifies that something unsafe has

happened.

2.1.2.1. Covert Channels

This is a digression, but an interesting security flaw relating to virtualised machines. If the partitioning

of the system is not static, but rather dynamic, there is a potential security issue involved.

In a dynamic system, resources are allocated to the operating systems running on top as required. Thus

if one is doing particularly CPU intensive operations whilst the other is waiting on data to come from

disks, more of the CPU power will be given to the first task. In a static system, each would get 50% an

the unused portion would go to waste.

Dynamic allocation actually opens up a communications channel between the two operating systems.

Anywhere that two states can be indicated is sufficient to communicate in binary. Imagine both sys-

tems are extremely secure, and no information should be able to pass between one and the other, ever.

Two people with access could collude to pass information between themselves by writing two pro-

grams that try to take large amounts of resources at the same time.

When one takes a large amount of memory there is less available for the other. If both keep track of

the maximum allocations, a bit of information can be transferred. Say they make a pact to check every

second if they can allocate this large amount of memory. If the target can, that is considered binary 0,

and if it can not (the other machine has all the memory), that is considered binary 1. A data rate of one

bit per second is not astounding, but information is flowing.

This is called a covert channel, and whilst admittedly far-fetched there have been examples of security

breaches from such mechanisms. It just goes to show that the life of a systems programmer is never

simple!

2.2. Userspace
We call the theoretical place where programs are run by the user userspace. Each program runs in

userspace, talking to the kernel through system calls (discussed below).

As previously discussed, userspace is unprivileged. User programs can only do a limited range of

things, and should never be able to crash other programs, even if they crash themselves.

Computer Science from the Bottom Up

107

3. System Calls

3.1. Overview
System calls are how userspace programs interact with the kernel. The general principle behind how

they work is described below.

3.1.1. System call numbers

Each and every system call has a system call number which is known by both the userspace and the

kernel. For example, both know that system call number 10 is open() , system call number 11 is

read() , etc.

The Application Binary Interface (ABI) is very similar to an API but rather than being for software is

for hardware. The API will define which register the system call number should be put in so the kernel

can find it when it is asked to do the system call.

3.1.2. Arguments

System calls are no good without arguments; for example open() needs to tell the kernel exactly

what file to open. Once again the ABI will define which registers arguments should be put into for the

system call.

3.1.3. The trap

To actually perform the system call, there needs to be some way to communicate to the kernel we wish

to make a system call. All architectures define an instruction, usually called break or something sim-

ilar, that signals to the hardware we wish to make a system call.

Specifically, this instruction will tell the hardware to modify the instruction pointer to point to the ker-

nels system call handler (when the operating system sets its self up it tells the hardware where its sys-

tem call handler lives). So once the userspace calls the break instruction, it has lost control of the pro-

gram and passed it over to the kernel.

The rest of the operation is fairly straight forward. The kernel looks in the predefined register for the

system call number, and looks it up in a table to see which function it should call. This function is

called, does what it needs to do, and places its return value into another register defined by the ABI as

the return register.

Computer Science from the Bottom Up

108

The final step is for the kernel to make a jump instruction back to the userspace program, so it can

continue off where it left from. The userpsace program gets the data it needs from the return register,

and continues happily on its way!

Although the details of the process can get quite hairy, this is basically all their is to a system call.

3.1.4. libc

Although you can do all of the above by hand for each system call, system libraries usually do most of

the work for you. The standard library that deals with system calls on UNIX like systems is libc ; we

will learn more about its roles in future weeks.

3.2. Analysing a system call
As the system libraries usually deal with making systems call for you, we need to do some low level

hacking to illustrate exactly how the system calls work.

We will illustrate how probably the most simple system call, getpid() , works. This call takes no ar-

guments and returns the ID of the currently running program (or process; we'll look more at the

process in later weeks).

1 #include <stdio.h>

/* for syscall() */

#include <sys/syscall.h>

5 #include <unistd.h>

/* system call numbers */

#include <asm/unistd.h>

Computer Science from the Bottom Up

109

10 void function(void)

{

int pid;

pid = __syscall(__NR_getpid);

15 }

Example 4.1. getpid() example

We start by writing a small C program which we can start to illustrate the mechanism behind system

calls. The first thing to note is that there is a syscall argument provided by the system libraries for

directly making system calls. This provides an easy way for programmers to directly make systems

calls without having to know the exact assembly language routines for making the call on their hard-

ware. So why do we use getpid() at all? Firstly, it is much clearer to use a symbolic function name

in your code. However, more importantly, getpid() may work in very different ways on different

systems. For example, on Linux the getpid() call can be cached, so if it is run twice the system li-

brary will not take the penalty of having to make an entire system call to find out the same information

again.

By convention under Linux, system calls numbers are defined in the asm/unistd.h file from the

kernel source. Being in the asm subdirectory, this is different for each architecture Linux runs on.

Again by convention, system calls numbers are given a #define name consisting of __NR_ . Thus

you can see our code will be making the getpid system call, storing the value in pid .

We will have a look at how several architectures implement this code under the hood. We're going to

look at real code, so things can get quite hairy. But stick with it -- this is exactly how your system

works!

3.2.1. PowerPC

PowerPC is a RISC architecture common in older Apple computers, and the core of devices such as

Computer Science from the Bottom Up

110

the latest version of the Xbox.

1

/* On powerpc a system call basically clobbers the same registers like a

* function call, with the exception of LR (which is needed for the

* "sc; bnslr" sequence) and CR (where only CR0.SO is clobbered to signal

5 * an error return status).

*/

#define __syscall_nr(nr, type, name, args...) \

unsigned long __sc_ret, __sc_err; \

10 { \

register unsigned long __sc_0 __asm__ ("r0"); \

register unsigned long __sc_3 __asm__ ("r3"); \

register unsigned long __sc_4 __asm__ ("r4"); \

register unsigned long __sc_5 __asm__ ("r5"); \

15 register unsigned long __sc_6 __asm__ ("r6"); \

register unsigned long __sc_7 __asm__ ("r7"); \

\

__sc_loadargs_##nr(name, args); \

__asm__ __volatile__ \

Computer Science from the Bottom Up

111

20 ("sc \n\t" \

"mfcr %0 " \

: "=&r" (__sc_0), \

"=&r" (__sc_3), "=&r" (__sc_4), \

"=&r" (__sc_5), "=&r" (__sc_6), \

25 "=&r" (__sc_7) \

: __sc_asm_input_##nr \

: "cr0", "ctr", "memory", \

"r8", "r9", "r10","r11", "r12"); \

__sc_ret = __sc_3; \

30 __sc_err = __sc_0; \

} \

if (__sc_err & 0x10000000) \

{ \

errno = __sc_ret; \

35 __sc_ret = -1; \

} \

return (type) __sc_ret

#define __sc_loadargs_0(name, dummy...) \

Computer Science from the Bottom Up

112

40 __sc_0 = __NR_##name

#define __sc_loadargs_1(name, arg1) \

__sc_loadargs_0(name); \

__sc_3 = (unsigned long) (arg1)

#define __sc_loadargs_2(name, arg1, arg2) \

45 __sc_loadargs_1(name, arg1); \

__sc_4 = (unsigned long) (arg2)

#define __sc_loadargs_3(name, arg1, arg2, arg3) \

__sc_loadargs_2(name, arg1, arg2); \

__sc_5 = (unsigned long) (arg3)

50 #define __sc_loadargs_4(name, arg1, arg2, arg3, arg4) \

__sc_loadargs_3(name, arg1, arg2, arg3); \

__sc_6 = (unsigned long) (arg4)

#define __sc_loadargs_5(name, arg1, arg2, arg3, arg4, arg5) \

__sc_loadargs_4(name, arg1, arg2, arg3, arg4); \

55 __sc_7 = (unsigned long) (arg5)

#define __sc_asm_input_0 "0" (__sc_0)

#define __sc_asm_input_1 __sc_asm_input_0, "1" (__sc_3)

#define __sc_asm_input_2 __sc_asm_input_1, "2" (__sc_4)

Computer Science from the Bottom Up

113

60 #define __sc_asm_input_3 __sc_asm_input_2, "3" (__sc_5)

#define __sc_asm_input_4 __sc_asm_input_3, "4" (__sc_6)

#define __sc_asm_input_5 __sc_asm_input_4, "5" (__sc_7)

#define _syscall0(type,name) \

65 type name(void) \

{ \

__syscall_nr(0, type, name); \

}

70 #define _syscall1(type,name,type1,arg1) \

type name(type1 arg1) \

{ \

__syscall_nr(1, type, name, arg1); \

}

75

#define _syscall2(type,name,type1,arg1,type2,arg2) \

type name(type1 arg1, type2 arg2) \

{ \

__syscall_nr(2, type, name, arg1, arg2); \

Computer Science from the Bottom Up

114

80 }

#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \

type name(type1 arg1, type2 arg2, type3 arg3) \

{ \

85 __syscall_nr(3, type, name, arg1, arg2, arg3); \

}

#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \

type name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \

90 { \

__syscall_nr(4, type, name, arg1, arg2, arg3, arg4); \

}

#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5) \

95 type name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5) \

{ \

__syscall_nr(5, type, name, arg1, arg2, arg3, arg4, arg5); \

Computer Science from the Bottom Up

115

}

Example 4.2. PowerPC system call example

This code snippet from the kernel header file asm/unistd.h shows how we can implement system

calls on PowerPC. It looks very complicated, but it can be broken down step by step.

Firstly, jump to the end of the example where the _syscallN macros are defined. You can see there

are many macros, each one taking progressively one more argument. We'll concentrate on the most

simple version, _syscall0 to start with. It only takes two arguments, the return type of the system

call (e.g. a C int or char , etc) and the name of the system call. For getpid this would be done as

_syscall0(int,getpid) .

Easy so far! We now have to start pulling apart __syscall_nr macro. This is not dissimilar to where

we were before, we take the number of arguments as the first parameter, the type, name and then the

actual arguments.

The first step is declaring some names for registers. What this essentially does is says __sc_0 refers

to r0 (i.e. register 0). The compiler will usually use registers how it wants, so it is important we give

it constraints so that it doesn't decide to go using register we need in some ad-hoc manner.

We then call sc_loadargs with the interesting ## parameter. That is just a paste command, which

gets replaced by the nr variable. Thus for our example it expands to __sc_loadargs_0(name,

args); . __sc_loadargs we can see below sets __sc_0 to be the system call number; notice the

paste operator again with the __NR_ prefix we talked about, and the variable name that refers to a

specific register.

So, all this tricky looking code actually does is puts the system call number in register 0! Following

the code through, we can see that the other macros will place the system call arguments into r3

through r7 (you can only have a maximum of 5 arguments to your system call).

Now we are ready to tackle the __asm__ section. What we have here is called inline assembly be-

cause it is assembler code mixed right in with source code. The exact syntax is a little to complicated

to go into right here, but we can point out the important parts.

Just ignore the __volatile__ bit for now; it is telling the compiler that this code is unpredictable so

it shouldn't try and be clever with it. Again we'll start at the end and work backwards. All the stuff af-

ter the colons is a way of communicating to the compiler about what the inline assembly is doing to

Computer Science from the Bottom Up

116

the CPU registers. The compiler needs to know so that it doesn't try using any of these registers in

ways that might cause a crash.

But the interesting part is the two assembly statements in the first argument. The one that does all the

work is the sc call. That's all you need to do to make your system call!

So what happens when this call is made? Well, the processor is interrupted knows to transfer control to

a specific piece of code setup at system boot time to handle interrupts. There are many interrupts; sys-

tem calls are just one. This code will then look in register 0 to find the system call number; it then

looks up a table and finds the right function to jump to to handle that system call. This function re-

ceives its arguments in registers 3 - 7.

So, what happens once the system call handler runs and completes? Control returns to the next instruc-

tion after the sc , in this case a memory fence instruction. What this essentially says is "make sure

everything is committed to memory"; remember how we talked about pipelines in the superscalar ar-

chitecture? This instruction ensures that everything we think has been written to memory actually has

been, and isn't making its way through a pipeline somewhere.

Well, we're almost done! The only thing left is to return the value from the system call. We see that

__sc_ret is set from r3 and __sc_err is set from r0. This is interesting; what are these two values

all about?

One is the return value, and one is the error value. Why do we need two variables? System calls can

fail, just as any other function. The problem is that a system call can return any possible value; we can

not say "a negative value indicates failure" since a negative value might be perfectly acceptable for

some particular system call.

So our system call function, before returning, ensures its result is in register r3 and any error code is in

register r0. We check the error code to see if the top bit is set; this would indicate a negative number. If

so, we set the global errno value to it (this is the standard variable for getting error information on

call failure) and set the return to be -1 . Of course, if a valid result is received we return it directly.

So our calling function should check the return value is not -1 ; if it is it can check errno to find the

exact reason why the call failed.

And that is an entire system call on a PowerPC!

Computer Science from the Bottom Up

117

3.2.2. x86 system calls

Below we have the same interface as implemented for the x86 processor.

1 /* user-visible error numbers are in the range -1 - -124: see <asm-i386/errno.h> */

#define __syscall_return(type, res) \

do { \

5 if ((unsigned long)(res) >= (unsigned long)(-125)) { \

errno = -(res); \

res = -1; \

} \

return (type) (res); \

10 } while (0)

/* XXX - _foo needs to be __foo, while __NR_bar could be _NR_bar. */

#define _syscall0(type,name) \

type name(void) \

15 { \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

Computer Science from the Bottom Up

118

: "0" (__NR_##name)); \

20 __syscall_return(type,__res);

}

#define _syscall1(type,name,type1,arg1) \

type name(type1 arg1) \

25 { \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name),"b" ((long)(arg1))); \

30 __syscall_return(type,__res);

}

#define _syscall2(type,name,type1,arg1,type2,arg2) \

type name(type1 arg1,type2 arg2) \

35 { \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

Computer Science from the Bottom Up

119

: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2))); \

40 __syscall_return(type,__res);

}

#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \

type name(type1 arg1,type2 arg2,type3 arg3) \

45 { \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

50 "d" ((long)(arg3))); \

__syscall_return(type,__res); \

}

#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \

55 type name (type1 arg1, type2 arg2, type3 arg3, type4 arg4) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

Computer Science from the Bottom Up

120

: "=a" (__res) \

60 : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

"d" ((long)(arg3)),"S" ((long)(arg4))); \

__syscall_return(type,__res); \

}

65 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \

type5,arg5) \

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \

{ \

long __res; \

70 __asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

"d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5))); \

__syscall_return(type,__res); \

75 }

#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \

type5,arg5,type6,arg6) \

Computer Science from the Bottom Up

121

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6 arg6) \

80 { \

long __res; \

__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int $0x80 ; pop %%ebp" \

: "=a" (__res) \

: "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

85 "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \

"0" ((long)(arg6))); \

__syscall_return(type,__res); \

}

Example 4.3. x86 system call example

The x86 architecture is very different from the PowerPC that we looked at previously. The x86 is

classed as a CISC processor as opposed to the RISC PowerPC, and has dramatically less registers.

Start by looking at the most simple _syscall0 macro. It simply calls the int instruction with a

value of 0x80 . This instruction makes the CPU raise interrupt 0x80, which will jump to code that

handles system calls in the kernel.

We can start inspecting how to pass arguments with the longer macros. Notice how the PowerPC im-

plementation cascaded macros downwards, adding one argument per time. This implementation has

slightly more copied code, but is a little easier to follow.

x86 register names are based around letters, rather than the numerical based register names of Power-

PC. We can see from the zero argument macro that only the A register gets loaded; from this we can

tell that the system call number is expected in the EAX register. As we start loading registers in the

other macros you can see the short names of the registers in the arguments to the __asm__ call.

We see something a little more interesting in __syscall6 , the macro taking 6 arguments. Notice the

Computer Science from the Bottom Up

122

push and pop instructions? These work with the stack on x86, "pushing" a value onto the top of the

stack in memory, and popping the value from the stack back into memory. Thus in the case of having

six registers we need to store the value of the ebp register in memory, put our argument in in (the

mov instruction), make our system call and then restore the original value into ebp . Here you can

see the disadvantage of not having enough registers; stores to memory are expensive so the more you

can avoid them, the better.

Another thing you might notice there is nothing like the memory fence instruction we saw previously

with the PowerPC. This is because on x86 the effect of all instructions will be guaranteed to be visible

when the complete. This is easier for the compiler (and programmer) to program for, but offers less

flexibility.

The only thing left to contrast is the return value. On the PowerPC we had two registers with return

values from the kernel, one with the value and one with an error code. However on x86 we only have

one return value that is passed into __syscall_return . That macro casts the return value to un-

signed long and compares it to an (architecture and kernel dependent) range of negative values that

might represent error codes (note that the errno value is positive, so the negative result from the ker-

nel is negated). However, this means that system calls can not return small negative values, since they

are indistinguishable from error codes. Some system calls that have this requirement, such as get-

priority() , add an offset to their return value to force it to always be positive; it is up to the user-

space to realise this and subtract this constant value to get back to the "real" value.

4. Privileges

4.1. Hardware
We mentioned how one of the major tasks of the operating system is to implement security; that is to

not allow one application or user to interfere with any other that is running in the system. This means

applications should not be able to overwrite each others memory or files, and only access system re-

sources as dictated by system policy.

However, when an application is running it has exclusive use of the processor. We see how this works

when we examine processes in the next chapter. Ensuring the application only accesses memory it

owns is implemented by the virtual memory system, which we examine in the chapter after next. The

essential point is that the hardware is responsible for enforcing these rules.

Computer Science from the Bottom Up

123

The system call interface we have examined is the gateway to the application getting to system re-

sources. By forcing the application to request resources through a system call into the kernel, the ker-

nel can enforce rules about what sort of access can be provided. For example, when an application

makes an open() system call to open a file on disk, it will check the permissions of the user against

the file permissions and allow or deny access.

4.1.1. Privilege Levels

Hardware protection can usually be seen as a set of concentric rings around a core set of operations.

Ring 0

Ring 1

Ring 2

Ring n

Privilege levels on x86

Figure 4.3. Rings

In the inner most ring are the most protected instructions; those that only the kernel should be allowed

to call. For example, the HLT instruction to halt the processor should not be allowed to be run by a

user application, since it would stop the entire computer from working. However, the kernel needs to

be able to call this instruction when the computer is legitimately shut down.1

1. What happens when a "naughty" application calls that instruction anyway? The hardware will usual-

ly raise an exception, which will involve jumping to a specified handler in the operating system sim-

ilar to the system call handler. The operating system will then probably terminate the program, usu-

Computer Science from the Bottom Up

124

Each inner ring can access any instructions protected by a further out ring, but not any protected by a

further in ring. Not all architectures have multiple levels of rings as above, but most will either provide

for at least a "kernel" and "user" level.

4.1.1.1. 386 protection model

The 386 protection model has four rings, though most operating systems (such as Linux and Windows)

only use two of the rings to maintain compatibility with other architectures that do now allow as many

discrete protection levels.

386 maintains privileges by making each piece of application code running in the system have a small

descriptor, called a code descriptor, which describes, amongst other things, its privilege level. When

running application code makes a jump into some other code outside the region described by its code

descriptor, the privilege level of the target is checked. If it is higher than the currently running code,

the jump is disallowed by the hardware (and the application will crash).

4.1.1.2. Raising Privilege

Applications may only raise their privilege level by specific calls that allow it, such as the instruction

to implement a system call. These are usually referred to as a call gate because they function just as a

physical gate; a small entry through an otherwise impenetrable wall. When that instruction is called we

have seen how the hardware completely stops the running application and hands control over to the

kernel. The kernel must act as a gatekeeper; ensuring that nothing nasty is coming through the gate.

This means it must check system call arguments carefully to make sure it will not be fooled into doing

anything it shouldn't (if it can be, that is a security bug). As the kernel runs in the innermost ring, it has

permissions to do any operation it wants; when it is finished it will return control back to the applica-

tion which will again be running with its lower privilege level.

4.1.1.3. Fast System Calls

One problem with traps as described above is that they are very expensive for the processor to imple-

ment. There is a lot of state to be saved before context can switch. Modern processors have realised

this overhead and strive to reduce it.

To understand the call-gate mechanism described above requires investigation of the ingenious but

complicated segmentation scheme used by the processor. The original reason for segmentation was to

be able to use more than the 16 bits available in a register for an address, as illustrated in Figure 4.4,

“x86 Segmentation Addressing”.

ally giving the user some error about how the application has crashed.

Computer Science from the Bottom Up

125

CODE

DATA

STACK

CS:0x1000

DS:0x4000

64K (2^16)

SS:0x10000

2^0

2^20

CPU

64KiB Segments

ADDRESS

16 bits4 bits

20 bits (1MiB)

SEGMENT

Segmentation expanding the address space of a processor by dividing it into chunks. The processor

keeps special segment registers, and addresses are specified by a segment register and offset combi-

nation. The value of the segment register is added to the offset portion to find a final address.

Figure 4.4. x86 Segmentation Addressing

When x86 moved to 32 bit registers, the segmentation scheme remained but in a different format.

Rather than fixed segment sizes, segments are allowed to be any size. This means the processor needs

to keep track of all these different segments and their sizes, which it does using descriptors. The seg-

ment descriptors available to everyone are kept in the global descriptor table or GDT for short. Each

process has a number of registers which point to entries in the GDT; these are the segments the process

can access (there are also local descriptor tables, and it all interacts with task state segments, but that's

not important now). The overall situation is illustrated in Figure 4.5, “x86 segments”.

Computer Science from the Bottom Up

126

G
at

e
C

al
l

D
at

a
Pr

oc
es

s
C

od
e

Pr
oc

es
s

TS
S

Pr
oc

es
s

CODE

DATA

STACK

Start : 0x1000
Size : 0x1000
Ring : 0
Type : CODE

Target Segment
Target Offset
Protection
Type : GATE

Start : 0x2000
Size : 0x1000
Ring : 3
Type : CODE

Start : 0x3000
Size : 0x1000
Ring : 3
Type : DATA

St
ac

k
Pr

oc
es

s

Start : 0x4000
Size : 0x1000
Ring : 3
Type : STACK

Start : 0x5000
Size : 0x1000
Ring : 3
Type : TSS

Call gate invokes
code at given offset

Backing store for process
state on context switch

"Far" call invokes a call gate
which redirects to another segment

1
2
3

0

Protection rings ensure outer
rings can not see inner rings

Global Descriptor Table

Process

Registers, etc

Pr
ot

ec
te

d
C

od
e

x86 segments in action. Notice how a "far-call" passes via a call-gate which redirects to a segment of

code running at a lower ring level. The only way to modify the code-segment selector, implicitly used for

Computer Science from the Bottom Up

127

all code addresses, is via the call mechanism. Thus the call-gate mechanism ensures that to choose a

new segment descriptor, and hence possibly change protection levels, you must transition via a known

entry point.

Figure 4.5. x86 segments

Since the operating system assigns the segment registers as part of the process state, the processor

hardware knows what segments of memory the currently running process can access and can enforce

protection to ensure the process doesn't touch anything it is not supposed to. If it does go out of

bounds, you receive a segmentation fault, which most programmers are familiar with.

The picture becomes more interesting when running code needs to make calls into code that resides in

another segment. As discussed in Section 4.1.1.1, “386 protection model”, x86 does this with rings,

where ring 0 is the highest permission, ring 3 is the lowest, and inner rings can access outer rings but

not vice-versa.

As discussed in Section 4.1.1.2, “Raising Privilege”, when ring 3 code wants to jump into ring 0 code,

it is essentially modifying its code segment selector to point to a different segment. To do this, it must

use a special far-call instruction which hardware ensures passes through the call gate. There is no oth-

er way for the running process to choose a new code-segment descriptor, and hence the processor will

start executing code at the known offset within the ring 0 segment, which is responsible for maintain-

ing integrity (e.g. not reading arbitrary and possibly malicious code and executing it. Of course nefari-

ous attackers will always look for ways to make your code do what you did not intend it to!).

This allows a whole hierarchy of segments and permissions between them. You might have noticed a

cross segment call sounds exactly like a system call. If you've ever looked at Linux x86 assembly the

standard way to make a system call is int 0x80 , which raises interrupt 0x80 . An interrupt stops

the processor and goes to an interrupt gate, which then works the same as a call gate -- it changes priv-

ilege level and bounces you off to some other area of code .

The problem with this scheme is that it is slow. It takes a lot of effort to do all this checking, and many

registers need to be saved to get into the new code. And on the way back out, it all needs to be restored

again.

On a modern x86 system segmentation and the four-level ring system is not used thanks to virtual

memory, discussed fully in Chapter 6, Virtual Memory. The only thing that really happens with seg-

mentation switching is system calls, which essentially switch from mode 3 (userspace) to mode 0 and

jump to the system call handler code inside the kernel. Thus the processor provides extra fast system

Computer Science from the Bottom Up

128

call instructions called sysenter (and sysexit to get back) which speed up the whole process

over a int 0x80 call by removing the general nature of a far-call — that is the possibility of transi-

tioning into any segment at any ring level — and restricting the call to only transition to ring 0 code at

a specific segment and offset, as stored in registers.

Because the general nature has been replaced with so much prior-known information, the whole

process can be speed up, and hence we have a the aforementioned fast system call. The other thing to

note is that state is not preserved when the kernel gets control. The kernel has to be careful to not to

destroy state, but it also means it is free to only save as little state as is required to do the job, so can be

much more efficient about it. This is a very RISC philosophy, and illustrates how the line blurs be-

tween RISC and CISC processors.

For more information on how this is implemented in the Linux kernel, see Section 8.1.1, “Kernel Li-

brary”.

4.2. Other ways of communicating with the kernel

4.2.1. ioctl

about ioctls

4.3. File Systems
about proc, sysfs, debugfs, etc

Chapter 5. The Process

1. What is a process?

We are all familiar with the modern operating system running many tasks all at once or multitasking.

We can think of each process as a bundle of elements kept by the kernel to keep track of all these run-

ning tasks.

Computer Science from the Bottom Up

129

2. Elements of a process

Files

Registers

Memory

Kernel State

Process ID

Figure 5.1. The Elements of a Process

2.1. Process ID
The process ID (or the PID) is assigned by the operating system and is unique to each running process.

2.2. Memory
We will learn exactly how a process gets its memory in the following weeks -- it is one of the most

fundamental parts of how the operating system works. However, for now it is sufficient to know that

each process gets its own section of memory.

In this memory all the program code is stored, along with variables and any other allocated storage.

Computer Science from the Bottom Up

130

Parts of the memory can be shared between processes (called, not surprisingly shared memory). You

will often see this called System Five Shared Memory (or SysV SHM) after the original implementa-

tion in an older operating system.

Another important concept a process may utilise is that of mmaping a file on disk to memory. This

means that instead of having to open the file and use commands such as read() and write() the

file looks as if it were any other type of RAM. mmaped areas have permissions such as read, write

and execute which need to be kept track of. As we know, it is the job of the operating system to main-

tain security and stability, so it needs to check if a process tries to write to a read only area and return

an error.

2.2.1. Code and Data

A process can be further divided into code and data sections. Program code and data should be kept

separately since they require different permissions from the operating system and separation facilitates

sharing of code (as you see later). The operating system needs to give program code permission to be

read and executed, but generally not written to. On the other hand data (variables) require read and

write permissions but should not be executable1.

2.2.2. The Stack

One other very important part of a process is an area of memory called the stack. This can be consid-

ered part of the data section of a process, and is intimately involved in the execution of any program.

A stack is generic data structure that works exactly like a stack of plates; you can push an item (put a

plate on top of a stack of plates), which then becomes the top item, or you can pop an item (take a

plate off, exposing the previous plate).

Stacks are fundamental to function calls. Each time a function is called it gets a new stack frame .

This is an area of memory which usually contains, at a minimum, the address to return to when com-

plete, the input arguments to the function and space for local variables.

By convention, stacks usually grow down2 . This means that the stack starts at a high address in mem-

1. Not all architectures support this, however. This has lead to a wide range of security problems on

many architectures.

2. Some architectures, such as PA-RISC from HP, have stacks that grow upwards. On some other archi-

tectures, such as IA64, there are other storage areas (the register backing store) that grow from the

Computer Science from the Bottom Up

131

ory and progressively gets lower.

High
Address

function1(int x, int y)
{

 int z

}
z = function2(x+y)

input (a)

return addr

input (y)

input (x)

return addr

local (z)

{
return a + 100

}

int function2(int a)

St
ac

k
Fr

am
e

Figure 5.2. The Stack

We can see how having a stack brings about many of the features of functions.

• Each function has its own copy of its input arguments. This is because each function is allo-

cated a new stack frame with its arguments in a fresh area of memory.

• This is the reason why a variable defined inside a function can not be seen by other functions.

Global variables (which can be seen by any function) are kept in a separate area of data mem-

ory.

• This facilitates recursive calls. This means a function is free to call itself again, because a

new stack frame will be created for all its local variables.

• Each frame contains the address to return to. C only allows a single value to be returned from

a function, so by convention this value is returned to the calling function in a specified regis-

ter, rather than on the stack.

• Because each frame has a reference to the one before it, a debugger can "walk" backwards,

following the pointers up the stack. From this it can produce a stack trace which shows you

all functions that were called leading into this function. This is extremely useful for debug-

bottom toward the stack.

Computer Science from the Bottom Up

132

ging.

You can see how the way functions works fits exactly into the nature of a stack. Any function

can call any other function, which then becomes the up most function (put on top of the

stack). Eventually that function will return to the function that called it (takes itself off the

stack).

• Stacks do make calling functions slower, because values must be moved out of registers and

into memory. Some architectures allow arguments to be passed in registers directly; however

to keep the semantics that each function gets a unique copy of each argument the registers

must rotate.

• You may have heard of the term a stack overflow. This is a common way of hacking a system

by passing bogus values. If you as a programmer accept arbitrary input into a stack variable

(say, reading from the keyboard or over the network) you need to explicitly say how big that

data is going to be.

Allowing any amount of data unchecked will simply overwrite memory. Generally this leads

to a crash, but some people realised that if they overwrote just enough memory to place a

specific value in the return address part of the stack frame, when the function completed

rather than returning to the correct place (where it was called from) they could make it return

into the data they just sent. If that data contains binary executable code that hacks the system

(e.g. starts a terminal for the user with root privileges) then your computer has been compro-

mised.

This happens because the stack grows downwards, but data is read in "upwards" (i.e. from

lower address to higher addresses).

There are several ways around this; firstly as a programmer you must ensure that you always

check the amount of data you are receiving into a variable. The operating system can help to

avoid this on behalf of the programmer by ensuring that the stack is marked as not exe-

cutable; that is that the processor will not run any code, even if a malicious user tries to pass

some into your program. Modern architectures and operating systems support this functional-

ity.

• Stacks are ultimately managed by the compiler, as it is responsible for generating the program

code. To the operating system the stack just looks like any other area of memory for the

process.

Computer Science from the Bottom Up

133

To keep track of the current growth of the stack, the hardware defines a register as the stack pointer.

The compiler (or the programmer, when writing in assembler) uses this register to keep track of the

current top of the stack.

1 $ cat sp.c

void function(void)

{

int i = 100;

5 int j = 200;

int k = 300;

}

$ gcc -fomit-frame-pointer -S sp.c

10

$ cat sp.s

.file "sp.c"

.text

.globl function

15 .type function, @function

function:

subl $16, %esp

Computer Science from the Bottom Up

134

movl $100, 4(%esp)

movl $200, 8(%esp)

20 movl $300, 12(%esp)

addl $16, %esp

ret

.size function, .-function

.ident "GCC: (GNU) 4.0.2 20050806 (prerelease) (Debian 4.0.1-4)"

25 .section .note.GNU-stack,"",@progbits

Example 5.1. Stack pointer example

Above we show a simple function allocating three variables on the stack. The disassembly illustrates

the use of the stack pointer on the x86 architecture1. Firstly we allocate some space on the stack for

our local variables. Since the stack grows down, we subtract from the value held in the stack pointer.

The value 16 is a value large enough to hold our local variables, but may not be exactly the size re-

quired (for example with 3 4 byte int values we really only need 12 bytes, not 16) to keep alignment

of the stack in memory on certain boundaries as the compiler requires.

Then we move the values into the stack memory (and in a real function, use them). Finally, before re-

turning to our parent function we "pop" the values off the stack by moving the stack pointer back to

where it was before we started.

2.2.3. The Heap

The heap is an area of memory that is managed by the process for on the fly memory allocation. This

is for variables whose memory requirements are not known at compile time.

1. Note we used the special flag to gcc -fomit-frame-pointer which specifies that an extra register

should not be used to keep a pointer to the start of the stack frame. Having this pointer helps debug-

gers to walk upwards through the stack frames, however it makes one less register available for other

applications.

Computer Science from the Bottom Up

135

The bottom of the heap is known as the brk, so called for the system call which modifies it. By using

the brk call to grow the area downwards the process can request the kernel allocate more memory

for it to use.

The heap is most commonly managed by the malloc library call. This makes managing the heap

easy for the programmer by allowing them to simply allocate and free (via the free call) heap mem-

ory. malloc can use schemes like a buddy allocator to manage the heap memory for the user. mal-

loc can also be smarter about allocation and potentially use anonymous mmaps for extra process

memory. This is where instead of mmaping a file into the process memory it directly maps an area of

system RAM. This can be more efficient. Due to the complexity of managing memory correctly, it is

very uncommon for any modern program to have a reason to call brk directly.

Computer Science from the Bottom Up

136

2.2.4. Memory Layout

Kernel

Shared Libraries
mmap area

Stack

Heap
malloc()

BSS

Data

Code

Pr
og

ra
m

 Im
ag

e

Process Memory

brk

Figure 5.3. Process memory layout

As we have seen a process has smaller areas of memory allocated to it, each with a specific purpose.

An example of how the process is laid out in memory by the kernel is given above. Starting from the

top, the kernel reserves itself some memory at the top of the process (we see with virtual memory how

this memory is actually shared between all processes).

Underneath that is room for mmaped files and libraries. Underneath that is the stack, and below that

Computer Science from the Bottom Up

137

the heap.

At the bottom is the program image, as loaded from the executable file on disk. We take a closer look

at the process of loading this data in later chapters.

2.3. File Descriptors
In the first week we learnt about stdin , stdout and stderr ; the default files given to each

process. You will remember that these files always have the same file descriptor number (0,1,2 respec-

tively).

Thus, file descriptors are kept by the kernel individually for each process.

File descriptors also have permissions. For example, you may be able to read from a file but not write

to it. When the file is opened, the operating system keeps a record of the processes permissions to that

file in the file descriptor and doesn't allow the process to do anything it shouldn't.

2.4. Registers
We know from the previous chapter that the processor essentially performs generally simple opera-

tions on values in registers. These values are read (and written) to memory -- we mentioned above that

each process is allocated memory which the kernel keeps track of.

So the other side of the equation is keeping track of the registers. When it comes time for the currently

running process to give up the processor so another process can run, it needs to save its current state.

Equally, we need to be able to restore this state when the process is given more time to run on the

CPU. To do this the operating system needs to store a copy of the CPU registers to memory. When it is

time for the process to run again, the operating system will copy the register values back from memory

to the CPU registers and the process will be right back where it left off.

2.5. Kernel State
Internally, the kernel needs to keep track of a number of elements for each process.

2.5.1. Process State

Another important element for the operating system to keep track of is the process state. If the process

is currently running it makes sense to have it in a running state.

Computer Science from the Bottom Up

138

However, if the process has requested to read a file from disk we know from our memory hierarchy

that this may take a significant amount of time. The process should give up its current execution to al-

low another process to run, but the kernel need not let the process run again until the data from the

disk is available in memory. Thus it can mark the process as disk wait (or similar) until the data is

ready.

2.5.2. Priority

Some processes are more important than others, and get a higher priority. See the discussion on the

scheduler below.

2.5.3. Statistics

The kernel can keep statistics on each processes behaviour which can help it make decisions about

how the process behaves; for example does it mostly read from disk or does it mostly do CPU inten-

sive operations?

3. Process Hierarchy

Whilst the operating system can run many processes at the same time, in fact it only ever directly

starts one process called the init (short for initial) process. This isn't a particularly special process ex-

cept that its PID is always 0 and it will always be running.

All other processes can be considered children of this initial process. Processes have a family tree just

like any other; each process has a parent and can have many siblings, which are processes created1 by

the same parent.

Certainly children can create more children and so on and so forth.

1 init-+-apmd

|-atd

1. The term spawn is often used when talking about parent processes creating children; as in "the

process spawned a child".

Computer Science from the Bottom Up

139

|-cron

...

5 |-dhclient

|-firefox-bin-+-firefox-bin---2*[firefox-bin]

| |-java_vm---java_vm---13*[java_vm]

| `-swf_play

Example 5.2. pstree example

4. Fork and Exec

New processes are created by the two related interfaces fork and exec .

4.1. Fork
When you come to metaphorical "fork in the road" you generally have two options to take, and your

decision effects your future. Computer programs reach this fork in the road when they hit the fork()

system call.

At this point, the operating system will create a new process that is exactly the same as the parent

process. This means all the state that was talked about previously is copied, including open files, regis-

ter state and all memory allocations, which includes the program code.

The return value from the system call is the only way the process can determine if it was the existing

process or a new one. The return value to the parent process will be the Process ID (PID) of the child,

whilst the child will get a return value of 0.

At this point, we say the process has forked and we have the parent-child relationship as described

above.

4.2. Exec
Forking provides a way for an existing process to start a new one, but what about the case where the

Computer Science from the Bottom Up

140

new process is not part of the same program as parent process? This is the case in the shell; when a

user starts a command it needs to run in a new process, but it is unrelated to the shell.

This is where the exec system call comes into play. exec will replace the contents of the currently

running process with the information from a program binary.

Thus the process the shell follows when launching a new program is to firstly fork , creating a new

process, and then exec (i.e. load into memory and execute) the program binary it is supposed to run.

4.3. How Linux actually handles fork and exec

4.3.1. clone

In the kernel, fork is actually implemented by a clone system call. This clone interfaces effective-

ly provides a level of abstraction in how the Linux kernel can create processes.

clone allows you to explicitly specify which parts of the new process are copied into the new

process, and which parts are shared between the two processes. This may seem a bit strange at first,

but allows us to easily implement threads with one very simple interface.

4.3.1.1. Threads

While fork copies all of the attributes we mentioned above, imagine if everything was copied for the

new process except for the memory. This means the parent and child share the same memory, which

includes program code and data.

Computer Science from the Bottom Up

141

Kernel State

Registers

Thread ID

Kernel State

Registers

Thread ID

Process ID

Memory

Files

Figure 5.4. Threads

This hybrid child is called a thread. Threads have a number of advantages over where you might use

fork

1. Separate processes can not see each others memory. They can only communicate with each

other via other system calls.

Threads however, share the same memory. So you have the advantage of multiple processes,

with the expense of having to use system calls to communicate between them.

The problem that this raises is that threads can very easily step on each others toes. One

thread might increment a variable, and another may decrease it without informing the first

thread. These type of problems are called concurrency problems and they are many and var-

Computer Science from the Bottom Up

142

ied.

To help with this, there are userspace libraries that help programmers work with threads prop-

erly. The most common one is called POSIX threads or, as it more commonly referred to

pthreads

2. Switching processes is quite expensive, and one of the major expenses is keeping track of

what memory each process is using. By sharing the memory this overhead is avoided and

performance can be significantly increased.

There are many different ways to implement threads. On the one hand, a userspace implementation

could implement threads within a process without the kernel having any idea about it. The threads all

look like they are running in a single process to the kernel.

This is suboptimal mainly because the kernel is being withheld information about what is running in

the system. It is the kernels job to make sure that the system resources are utilised in the best way pos-

sible, and if what the kernel thinks is a single process is actually running multiple threads it may make

suboptimal decisions.

Thus the other method is that the kernel has full knowledge of the thread. Under Linux, this is estab-

lished by making all processes able to share resources via the clone system call. Each thread still

has associated kernel resources, so the kernel can take it into account when doing resource allocations.

Other operating systems have a hybrid method, where some threads can be specified to run in user-

space only ("hidden" from the kernel) and others might be a light weight process, a similar indication

to the kernel that the processes is part of a thread group.

4.3.1.2. Copy on write

As we mentioned, copying the entire memory of one process to another when fork is called is an ex-

pensive operation.

One optimisation is called copy on write. This means that similar to threads above, the memory is ac-

tually shared, rather than copied, between the two processes when fork is called. If the processes are

only going to be reading the memory, then actually copying the data is unnecessary.

However, when a process writes to its memory, it needs to be a private copy that is not shared. As the

name suggests, copy on write optimises this by only doing the actual copy of the memory at the point

when it is written to.

Computer Science from the Bottom Up

143

Copy on write also has a big advantage for exec . Since exec will simply be overwriting all the

memory with the new program, actually copying the memory would waste a lot of time. Copy on write

saves us actually doing the copy.

4.4. The init process
We discussed the overall goal of the init process previously, and we are now in a position to under-

stand how it works.

On boot the kernel starts the init process, which then forks and execs the systems boot scripts. These

fork and exec more programs, eventually ending up forking a login process.

The other job of the init process is "reaping". When a process calls exit with a return code, the

parent usually wants to check this code to see if the child exited correctly or not.

However, this exit code is part of the process which has just called exit . So the process is "dead"

(e.g. not running) but still needs to stay around until the return code is collected. A process in this state

is called a zombie (the traits of which you can contrast with a mystical zombie!)

A process stays as a zombie until the parent collects the return code with the wait call. However, if

the parent exits before collecting this return code, the zombie process is still around, waiting aimlessly

to give its status to someone.

In this case, the zombie child will be reparented to the init process which has a special handler that

reaps the return value. Thus the process is finally free and the descriptor can be removed from the ker-

nels process table.

4.4.1. Zombie example

1 $ cat zombie.c

#include <stdio.h>

#include <stdlib.h>

5 int main(void)

Computer Science from the Bottom Up

144

{

pid_t pid;

printf("parent : %d\n", getpid());

10

pid = fork();

if (pid == 0) {

printf("child : %d\n", getpid());

15 sleep(2);

printf("child exit\n");

exit(1);

}

20 /* in parent */

while (1)

{

sleep(1);

}

25 }

Computer Science from the Bottom Up

145

$ ps ax | grep [z]ombie

16168 pts/9 S 0:00 ./zombie

16169 pts/9 Z 0:00 [zombie] <defunct>

Example 5.3. Zombie example process

Above we create a zombie process. The parent process will sleep forever, whilst the child will exit af-

ter a few seconds.

Below the code you can see the results of running the program. The parent process (16168) is in state

S for sleep (as we expect) and the child is in state Z for zombie. The ps output also tells us that the

process is defunct in the process description.1

5. Context Switching

Context switching refers to the process the kernel undertakes to switch from one process to another.

XXX ?

6. Scheduling

A running system has many processes, maybe even into the hundreds or thousands. The part of the

kernel that keeps track of all these processes is called the scheduler because it schedules which process

should be run next.

Scheduling algorithms are many and varied. Most users have different goals relating to what they want

their computer to do, so this affects scheduling decisions. For example, for a desktop PC you want to

make sure that your graphical applications for your desktop are given plenty of time to run, even if

system processes take a little longer. This will increase the responsiveness the user feels, as their ac-

1. The square brackets around the "z" of "zombie" are a little trick to remove the grep processes itself

from the ps output. grep interprets everything between the square brackets as a character class, but

because the process name will be "grep [z]ombie" (with the brackets) this will not match!

Computer Science from the Bottom Up

146

tions will have more immediate responses. For a server, you might want your web server application to

be given priority.

People are always coming up with new algorithms, and you can probably think of your own fairly eas-

ily. But there are a number of different components of scheduling.

6.1. Preemptive v co-operative scheduling
Scheduling strategies can broadly fall into two categories

1. Co-operative scheduling is where the currently running process voluntarily gives up execut-

ing to allow another process to run. The obvious disadvantage of this is that the process may

decide to never give up execution, probably because of a bug causing some form of infinite

loop, and consequently nothing else can ever run.

2. Preemptive scheduling is where the process is interrupted to stop it to allow another process

to run. Each process gets a time-slice to run in; at the point of each context switch a timer will

be reset and will deliver and interrupt when the time-slice is over.

We know that the hardware handles the interrupt independently of the running process, and

so at this point control will return to the operating system. At this point, the scheduler can de-

cide which process to run next.

This is the type of scheduling used by all modern operating systems.

6.2. Realtime
Some processes need to know exactly how long their time-slice will be, and how long it will be before

they get another time-slice to run. Say you have a system running a heart-lung machine; you don't

want the next pulse to be delayed because something else decided to run in the system!

Hard realtime systems make guarantees about scheduling decisions like the maximum amount of time

a process will be interrupted before it can run again. They are often used in life critical applications

like medical, aircraft and military applications.

Soft realtime is a variation on this, where guarantees aren't as strict but general system behaviour is

predictable. Linux can be used like this, and it is often used in systems dealing with audio and video. If

you are recording an audio stream, you don't want to be interrupted for long periods of time as you

will loose audio data which can not be retrieved.

Computer Science from the Bottom Up

147

6.3. Nice value
UNIX systems assign each process a nice value. The scheduler looks at the nice value and can give

priority to those processes that have a higher "niceness".

6.4. A brief look at the Linux Scheduler
The Linux scheduler has and is constantly undergoing many changes as new developers attempt to im-

prove its behaviour.

The current scheduler is known as the O(1) scheduler, which refers to the property that no matter how

many processes the scheduler has to choose from, it will choose the next one to run in a constant

amount of time1.

Previous incarnations of the Linux scheduler used the concept of goodness to determine which process

to run next. All possible tasks are kept on a run queue, which is simply a linked list of processes which

the kernel knows are in a "runnable" state (i.e. not waiting on disk activity or otherwise asleep). The

problem arises that to calculate the next process to run, every possible runnable process must have its

goodness calculated and the one with the highest goodness ``wins''. You can see that for more tasks, it

will take longer and longer to decide which processes will run next.

Process

Bitmap

Lowest PriorityHighest Priority

1. Big-O notation is a way of describing how long an algorithm takes to run given increasing inputs. If

the algorithm takes twice as long to run for twice as much input, this is increasing linearly. If another

algorithm takes four times as long to run given twice as much input, then it is increasing exponen-

tially. Finally if it takes the same amount of time now matter how much input, then the algorithm

runs in constant time. Intuitively you can see that the slower the algorithm grows for more input, the

better it is. Computer science text books deal with algorithm analysis in more detail.

Computer Science from the Bottom Up

148

Figure 5.5. The O(1) scheduler

In contrast, the O(1) scheduler uses a run queue structure as shown above. The run queue has a num-

ber of buckets in priority order and a bitmap that flags which buckets have processes available. Find-

ing the next process to run is a matter of reading the bitmap to find the first bucket with processes,

then picking the first process off that bucket's queue. The scheduler keeps two such structures, an ac-

tive and expired array for processes that are runnable and those which have utilised their entire time

slice respectively. These can be swapped by simply modifying pointers when all processes have had

some CPU time.

The really interesting part, however, is how it is decided where in the run queue a process should go.

Some of the things that need to be taken into account are the nice level, processor affinity (keeping

processes tied to the processor they are running on, since moving a process to another CPU in a SMP

system can be an expensive operation) and better support for identifying interactive programs (appli-

cations such as a GUI which may spend much time sleeping, waiting for user input, but when the user

does get around to interacting with it wants a fast response).

7. The Shell

On a UNIX system, the shell is the standard interface to handling processes on your system. Once the

shell was the primary interface, however modern Linux systems have a GUI and provide a shell via a

"terminal application" or similar. The primary job of the shell is to help the user handle starting, stop-

ping and otherwise controlling processes running in the system.

When you type a command at the prompt of the shell, it will fork a copy of itself and exec the

command that you have specified.

The shell then, by default, waits for that process to finish running before returning to a prompt to start

the whole process over again.

As an enhancement, the shell also allows you to background a job, usually by placing an & after the

command name. This is simply a signal that the shell should fork and execute the command, but not

wait for the command to complete before showing you the prompt again.

The new process runs in the background, and the shell is ready waiting to start a new process should

you desire. You can usually tell the shell to foreground a process, which means we do actually want to

wait for it to finish.

Computer Science from the Bottom Up

149

XXX : a bit of history about bourne shell

8. Signals

Processes running in the system require a way to be told about events that influence them. On UNIX

there is infrastructure between the kernel and processes called signals which allows a process to re-

ceive notification about events important to it.

When a signal is sent to a process, the kernel invokes a handler which the process must register with

the kernel to deal with that signal. A handler is simply a designed function in the code that has been

written to specifically deal with interrupt. Often the signal will be sent from inside the kernel itself,

however it is also common for one process to send a signal to another process (one form of inter-

process communication). The signal handler gets called asynchronously; that is the currently running

program is interrupted from what it is doing to process the signal event.

For example, one type of signal is an interrupt (defined in system headers as SIGINT) is delivered to

the process when the ctrl-c combination is pressed.

As a process uses the read system call to read input from the keyboard, the kernel will be watching

the input stream looking for special characters. Should it see a ctrl-c it will jump into signal han-

dling mode. The kernel will look to see if the process has registered a handler for this interrupt. If it

has, then execution will be passed to that function where the function will handle it. Should the

process have not registered a handler for this particular signal, then the kernel will take some default

action. With ctrl-c the default action is to terminate the process.

A process can choose to ignore some signals, but other signals are not allowed to be ignored. For ex-

ample, SIGKILL is the signal sent when a process should be terminated. The kernel will see that the

process has been sent this signal and terminate the process from running, no questions asked. The

process can not ask the kernel to ignore this signal, and the kernel is very careful about which process

is allowed to send this signal to another process; you may only send it to processes owned by you un-

less you are the root user. You may have seen the command kill -9 ; this comes from the imple-

mentation SIGKILL signal. It is commonly known that SIGKILL is actually defined to be 0x9 , and

so when specified as an argument to the kill program means that the process specified is going to

be stopped immediately. Since the process can not choose to ignore or handle this signal, it is seen as

an avenue of last resort, since the program will have no chance to clean up or exit cleanly. It is consid-

ered better to first send a SIGTERM (for terminate) to the process first, and if it has crashed or other-

Computer Science from the Bottom Up

150

wise will not exit then resort to the SIGKILL . As a matter of convention, most programs will install a

handler for SIGHUP (hangup -- a left over from days of serial terminals and modems) which will re-

load the program, perhaps to pick up changes in a configuration file or similar.

If you have programmed on a Unix system you would be familiar with segmentation faults

when you try to read or write to memory that has not been allocated to you. When the kernel notices

that you are touching memory outside your allocation, it will send you the segmentation fault signal.

Usually the process will not have a handler installed for this, and so the default action to terminate the

program ensues (hence your program "crashes"). In some cases a program may install a handler for

segmentation faults, although reasons for doing this are limited.

This raises the question of what happens after the signal is received. Once the signal handler has fin-

ished running, control is returned to the process which continues on from where it left off.

8.1. Example
The following simple program introduces a lot of signals to run!

1 $ cat signal.c

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

5

void sigint_handler(int signum)

{

printf("got SIGINT\n");

}

10

Computer Science from the Bottom Up

151

int main(void)

{

signal(SIGINT, sigint_handler);

printf("pid is %d\n", getpid());

15 while (1)

sleep(1);

}

$ gcc -Wall -o signal signal.c

$./signal

20 pid is 2859

got SIGINT # press ctrl-c

press ctrl-z

[1]+ Stopped ./signal

25 $ kill -SIGINT 2859

$ fg

./signal

got SIGINT

Quit # press ctrl-\

30

Computer Science from the Bottom Up

152

$

Example 5.4. Signals Example

We have simple program that simply defines a handler for the SIGINT signal, which is sent when the

user presses ctrl-c . All the signals for the system are defined in signal.h , including the sig-

nal function which allows us to register the handling function.

The program simply sits in a tight loop doing nothing until it quits. When we start the program, we try

pressing ctrl-c to make it quit. Rather than taking the default action, or handler is invoked and we

get the output as expected.

We then press ctrl-z which sends a SIGSTOP which by default puts the process to sleep. This

means it is not put in the queue for the scheduler to run and is thus dormant in the system.

As an illustration, we use the kill program to send the same signal from another terminal window. This

is actually implemented with the kill system call, which takes a signal and PID to send to (this

function is a little misnamed because not all signals do actually kill the process, as we are seeing, but

the signal function was already taken to register the handler). As the process is stopped, the signal

gets queued for the process. This means the kernel takes note of the signal and will deliver it when ap-

propriate.

At this point we wake the process up by using the command fg . This actually sends a SIGCONT sig-

nal to the process, which by default will wake the process back up. The kernel knows to put the

process on the run queue and give it CPU time again. We see at this point the queued signal is deliv-

ered.

In desperation to get rid of the program, we finally try ctrl-\ which sends a SIGQUIT (abort) to

the process. But if the process has aborted, where did the Quit output come from?

You guessed it, more signals! When a parent child has a process that dies, it gets a SIGCHLD signal

back. In this case the shell was the parent process and so it got the signal. Remember how we have the

zombie process that needs to be reaped with the wait call to get the return code from the child

process? Well another thing it also gives the parent is the signal number that the child may have died

from. Thus the shell knows that child process died from a SIGABRT and as an informational service

prints as much for the user (the same process happens to print out "Segmentation Fault" when the child

process dies from a SIGSEGV).

Computer Science from the Bottom Up

153

You can see how in even a simple program, around 5 different signals were used to communicate be-

tween processes and the kernel and keep things running. There are many other signals, but these are

certainly amongst the most common. Most have system functions defined by the kernel, but there are a

few signals reserved for users to use for their own purposes within their programs (SIGUSR).

Chapter 6. Virtual Memory

1. What Virtual Memory isn't
Virtual memory is often naively discussed as a way to extended your RAM by using the hard drive as

extra, slower, system memory. That is, once your system runs out of memory, it flows over onto the

hard drive which is used as "virtual" memory.

In modern operating systems, this is commonly referred to as swap space, because unused parts of

memory as swapped out to disk to free up main memory (remember, programs can only execute from

main memory).

Indeed, the ability to swap out memory to disk is an important capability, but as you will see it is not

the purpose of virtual memory, but rather a very useful side effect!

2. What virtual memory is
Virtual memory is all about making use of address space.

The address space of a processor refers the range of possible addresses that it can use when loading

and storing to memory. The address space is limited by the width of the registers, since as we know to

load an address we need to issue a load instruction with the address to load from stored in a register.

For example, registers that are 32 bits wide can hold addresses in a register range from 0x00000000

to 0xFFFFFFF . 2^32 is equal to 4GB, so a 32 bit processor can load or store to up to 4GB of memory.

2.1. 64 bit computing
New processors are generally all 64-bit processors, which as the name suggests has registers 64 bits

wide. As an exercise, you should work out the address space available to these processors (hint: it is

big!).

Computer Science from the Bottom Up

154

64-bit computing does have some trade-offs against using smaller bit-width processors. Every program

compiled in 64-bit mode requires 8-byte pointers, which can increase code and data size, and hence

impact both instruction and data cache performance. However, 64-bit processors tend to have more

registers, which means less need to save temporary variables to memory when the compiler is under

register pressure.

2.1.1. Canonical Addresses

While 64-bit processors have 64-bit wide registers, systems generally do not implement all 64-bits for

addressing — it is not actually possible to do load or store to all 16 exabytes of theoretical physi-

cal memory!

Thus most architectures define an unimplemented region of the address space which the processor will

consider invalid for use. x86-64 and Itanium both define the most-significant valid bit of an address,

which must then be sign-extended (see Section 2.3.1.3.1, “Sign-extension”) to create a valid address.

The result of this is that the total address space is effectively divided into two parts, an upper and a

lower portion, with the addresses in-between considered invalid. This is illustrated in Figure 6.1, “Il-

lustration of canonical addresses”. Valid addresses are termed canonical addresses (invalid addresses

being non-canonical).

Computer Science from the Bottom Up

155

Implementations define the most significant
implemented bit, which must be
sign-extended to create a full address

This has the effect of partitioning
the total address space into an
upper and lower portion, with
addresses inbetween considered
invalid

0000000...

1111111... 1

0

All higher bits must be the same as this bit

Unimplemented bits Most significant implemented bit

Full address

Figure 6.1. Illustration of canonical addresses

The exact most-significant bit value for the processor can usually be found by querying the processor

itself using its informational instructions. Although the exact value is implementation dependent, a

typical value would be 48; providing 248 = 256 TiB of usable address-space.

Reducing the possible address-space like this means that significant savings can be made with all parts

of the addressing logic in the processor and related components, as they know they will not need to

deal with full 64-bit addresses. Since the implementation defines the upper-bits as being signed-ex-

tended, this prevents portable operating systems using these bits to store or flag additional information

and ensuring compatibility if the implementation wishes to implement more address-space in the fu-

ture.

2.2. Using the address space
As with most components of the operating system, virtual memory acts as an abstraction between the

address space and the physical memory available in the system. This means that when a program uses

Computer Science from the Bottom Up

156

an address that address does not refer to the bits in an actual physical location in memory.

So to this end, we say that all addresses a program uses are virtual. The operating system keeps track

of virtual addresses and how they are allocated to physical addresses. When a program does a load or

store from an address, the processor and operating system work together to convert this virtual address

to the actual address in the system memory chips.

3. Pages

The total address-space is divided into individual pages. Pages can be many different sizes; generally

they are around 4 KiB, but this is not a hard and fast rule and they can be much larger but generally

not any smaller. The page is the smallest unit of memory that the operating system and hardware can

deal with.

Additionally, each page has a number of attributes set by the operating system. Generally, these in-

clude read, write and execute permissions for the current page. For example, the operating system can

generally mark the code pages of a process with an executable flag and the processor can choose to not

execute any code from pages without this bit set.

Page

Page

Page

Page

Virtual Address Space

Figure 6.2. Virtual memory pages

Programmers may at this point be thinking that they can easily allocate small amounts of memory,

much smaller than 4 KiB, using malloc or similar calls. This heap memory is actually backed by

page-size allocations, which the malloc implementation divides up and manages for you in an effi-

cient manner.

Computer Science from the Bottom Up

157

4. Physical Memory

Just as the operating system divides the possible address space up into pages, it divides the available

physical memory up into frames. A frame is just the conventional name for a hunk of physical memo-

ry the same size as the system page size.

The operating system keeps a frame-table which is a list of all possible pages of physical memory and

if they are free (available for allocation) or not. When memory is allocated to a process, it is marked as

used in the frame-table. In this way, the operating-system keeps track of all memory allocations.

How does the operating system know what memory is available? This information about where mem-

ory is located, how much, attributes and so forth is passed to the operating system by the BIOS during

initialisation.

5. Pages + Frames = Page Tables

It is the job of the operating system is to keep track of which of virtual-page points to which physical

frame. This information is kept in a page-table which, in its simplest form, could simply be a table

where each row contains its associated frame — this is termed a linear page-table. If you were to use

this simple system, with a 32 bit address-space and 4 KiB pages there would be 1048576 possible

pages to keep track of in the page table (232 ÷ 4096); hence the table would be 1048576 entries long to

ensure we can always map a virtual page to a physical page.

Page tables can have many different structures and are highly optimised, as the process of finding a

page in the page table can be a lengthy process. We will examine page-tables in more depth later.

The page-table for a process is under the exclusive control of the operating system. When a process re-

quests memory, the operating system finds it a free page of physical memory and records the virtual-

to-physical translation in the processes page-table. Conversely, when the process gives up memory, the

virtual-to-physical record is removed and the underlying frame becomes free for allocation to another

process.

6. Virtual Addresses

When a program accesses memory, it does not know or care where the physical memory backing the

Computer Science from the Bottom Up

158

address is stored. It knows it is up to the operating system and hardware to work together to map lo-

cate the right physical address and thus provide access to the data it wants. Thus we term the address a

program is using to access memory a virtual address. A virtual address consists of two parts; the page

and an offset into that page.

6.1. Page
Since the entire possible address space is divided up into regular sized pages, every possible address

resides within a page. The page component of the virtual address acts as an index into the page table.

Since the page is the smallest unit of memory allocation within the system there is a trade-off between

making pages very small, and thus having very many pages for the operating-system to manage, and

making pages larger but potentially wasting memory

6.2. Offset
The last bits of the virtual address are called the offset which is the location difference between the

byte address you want and the start of the page. You require enough bits in the offset to be able to get

to any byte in the page. For a 4K page you require (4K == (4 * 1024) == 4096 == 212 ==) 12 bits of

offset. Remember that the smallest amount of memory that the operating system or hardware deals

with is a page, so each of these 4096 bytes reside within a single page and are dealt with as "one".

6.3. Virtual Address Translation
Virtual address translation refers to the process of finding out which physical page maps to which vir-

tual page.

When translating a virtual-address to a physical-address we only deal with the page number . The

essence of the procedure is to take the page number of the given address and look it up in the page-

table to find a pointer to a physical address, to which the offset from the virtual address is added, giv-

ing the actual location in system memory.

Since the page-tables are under the control of the operating system, if the virtual-address doesn't exist

in the page-table then the operating-system knows the process is trying to access memory that has not

been allocated to it and the access will not be allowed.

Computer Science from the Bottom Up

159

OffsetPage Pointer

Virtual Address

Physical Page Frames
(System Memory)

0x10000000

0x10001000
Page Table

Physical Page Number

Physical Page Number

Physical Page Number

Page

Page

Page

Figure 6.3. Virtual Address Translation

We can follow this through for our previous example of a simple linear page-table. We calculated that

a 32-bit address-space would require a table of 1048576 entries when using 4KiB pages. Thus to map

a theoretical address of 0x80001234, the first step would be to remove the offset bits. In this case, with

4KiB pages, we know we have 12-bits (212 == 4096) of offset. So we would right-shift out 12-bits of

the virtual address, leaving us with 0x80001. Thus (in decimal) the value in row 524289 of the linear

page table would be the physical frame corresponding to this page.

You might see a problem with a linear page-table: since every page must be accounted for, whether in

use or not, a physically linear page-table is completely impractical with a 64-bit address space. Con-

sider a 64-bit address space divided into 64 KiB pages creates 264/216 = 252 pages to be managed; as-

Computer Science from the Bottom Up

160

suming each page requires an 8-byte pointer to a physical location a total of 252*23 = 255 or 32 PiB of

contiguous memory would be required just for the page table! There are ways to split addressing up

that avoid this which we will discuss later.

7. Consequences of virtual addresses,
pages and page tables

Virtual addressing, pages and page-tables are the basis of every modern operating system. It under-

pins most of the things we use our systems for.

7.1. Individual address spaces
By giving each process its own page table, every process can pretend that it has access to the entire ad-

dress space available from the processor. It doesn't matter that two processes might use the same ad-

dress, since different page-tables for each process will map it to a different frame of physical memory.

Every modern operating system provides each process with its own address space like this.

Over time, physical memory becomes fragmented, meaning that there are "holes" of free space in the

physical memory. Having to work around these holes would be at best annoying and would become a

serious limit to programmers. For example, if you malloc 8 KiB of memory; requiring the backing

of two 4 KiB frames, it would be a huge unconvinced if those frames had to be contiguous (i.e., physi-

cally next to each other). Using virtual-addresses it does not matter; as far as the process is concerned

it has 8 KiB of contiguous memory, even if those pages are backed by frames very far apart. By as-

signing a virtual address space to each process the programmer can leave working around fragmenta-

tion up to the operating system.

7.2. Protection
We previously mentioned that the virtual mode of the 386 processor is called protected mode, and this

name arises from the protection that virtual memory can offer to processes running on it.

In a system without virtual memory, every process has complete access to all of system memory. This

means that there is nothing stopping one process from overwriting another processes memory, causing

it to crash (or perhaps worse, return incorrect values, especially if that program is managing your bank

account!)

Computer Science from the Bottom Up

161

This level of protection is provided because the operating system is now the layer of abstraction be-

tween the process and memory access. If a process gives a virtual address that is not covered by its

page-table, then the operating system knows that that process is doing something wrong and can in-

form the process it has stepped out of its bounds.

Since each page has extra attributes, a page can be set read only, write only or have any number of oth-

er interesting properties. When the process tries to access the page, the operating system can check if it

has sufficient permissions and stop it if it does not (writing to a read only page, for example).

Systems that use virtual memory are inherently more stable because, assuming the perfect operating

system, a process can only crash itself and not the entire system (of course, humans write operating

systems and we inevitably overlook bugs that can still cause entire systems to crash).

7.3. Swap
We can also now see how the swap memory is implemented. If instead of pointing to an area of system

memory the page pointer can be changed to point to a location on a disk.

When this page is referenced, the operating system needs to move it from the disk back into system

memory (remember, program code can only execute from system memory). If system memory is full,

then another page needs to be kicked out of system memory and put into the swap disk before the re-

quired page can be put in memory. If another process wants that page that was just kicked out back

again, the process repeats.

This can be a major issue for swap memory. Loading from the hard disk is very slow (compared to op-

erations done in memory) and most people will be familiar with sitting in front of the computer whilst

the hard disk churns and churns whilst the system remains unresponsive.

7.3.1. mmap

A different but related process is the memory map, or mmap (from the system call name). If instead of

the page table pointing to physical memory or swap the page table points to a file, on disk, we say the

file is mmap ed.

Normally, you need to open a file on disk to obtain a file descriptor, and then read and write it

in a sequential form. When a file is mmaped it can be accessed just like system RAM.

Computer Science from the Bottom Up

162

7.4. Sharing memory
Usually, each process gets its own page table, so any address it uses is mapped to a unique frame in

physical memory. But what if the operating system points two page table-entries to the same frame?

This means that this frame will be shared; and any changes that one process makes will be visible to

the other.

You can see now how threads are implemented. In Section 4.3.1, “ clone ” we said that the Linux

clone() function could share as much or as little of a new process with the old process as it re-

quired. If a process calls clone() to create a new process, but requests that the two processes share

the same page table, then you effectively have a thread as both processes see the same underlying

physical memory.

You can also see now how copy on write is done. If you set the permissions of a page to be read-only,

when a process tries to write to the page the operating system will be notified. If it knows that this

page is a copy-on-write page, then it needs to make a new copy of the page in system memory and

point the page in the page table to this new page. This can then have its attributes updated to have

write permissions and the process has its own unique copy of the page.

7.5. Disk Cache
In a modern system, it is often the case that rather than having too little memory and having to swap

memory out, there is more memory available than the system is currently using.

The memory hierarchy tells us that disk access is much slower than memory access, so it makes sense

to move as much data from disk into system memory if possible.

Linux, and many other systems, will copy data from files on disk into memory when they are used.

Even if a program only initially requests a small part of the file, it is highly likely that as it continues

processing it will want to access the rest of file. When the operating system has to read or write to a

file, it first checks if the file is in its memory cache.

These pages should be the first to be removed as memory pressure in the system increases.

7.5.1. Page Cache

A term you might hear when discussing the kernel is the page cache.

The page cache refers to a list of pages the kernel keeps that refer to files on disk. From above, swap

Computer Science from the Bottom Up

163

page, mmaped pages and disk cache pages all fall into this category. The kernel keeps this list because

it needs to be able to look them up quickly in response to read and write requests XXX: this bit doesn't

file?

8. Hardware Support

So far, we have only mentioned that hardware works with the operating system to implement virtual

memory. However we have glossed over the details of exactly how this happens.

Virtual memory is necessarily quite dependent on the hardware architecture, and each architecture has

its own subtleties. However, there are are a few universal elements to virtual memory in hardware.

8.1. Physical v Virtual Mode
All processors have some concept of either operating in physical or virtual mode. In physical mode,

the hardware expects that any address will refer to an address in actual system memory. In virtual

mode, the hardware knows that addresses will need to be translated to find their physical address.

In many processors, this two modes are simply referred to as physical and virtual mode. Itanium is one

such example. The most common processor, the x86, has a lot of baggage from days before virtual

memory and so the two modes are referred to as real and protected mode. The first processor to imple-

ment protected mode was the 386, and even the most modern processors in the x86 family line can

still do real mode, though it is not used. In real mode the processor implements a form of memory or-

ganisation called segmentation.

8.1.1. Issues with segmentation

Segmentation is really only interesting as a historical note, since virtual memory has made it less rele-

vant. Segmentation has a number of drawbacks, not the least of which it is very confusing for inexpe-

rienced programmers, which virtual memory systems were largely invented to get around.

In segmentation there are a number of registers which hold an address that is the start of a segment.

The only way to get to an address in memory is to specify it as an offset from one of these segment

registers. The size of the segment (and hence the maximum offset you can specify) is determined by

the number of bits available to offset from segment base register. In the x86, the maximum offset is 16

bits, or only 64K1 . This causes all sorts of havoc if one wants to use an address that is more than 64K

1. Imagine that the maximum offset was 32 bits; in this case the entire address space could be accessed

Computer Science from the Bottom Up

164

away, which as memory grew into the megabytes (and now gigabytes) became more than a slight in-

convenience to a complete failure.

Segment Register

Segment Register

Segment Register

How do we get this address?

CPU

Figure 6.4. Segmentation

In the above figure, there are three segment registers which are all pointing to segments. The maxi-

mum offset (constrained by the number of bits available) is shown by shading. If the program wants an

address outside this range, the segment registers must be reconfigured. This quickly becomes a major

annoyance. Virtual memory, on the other hand, allows the program to specify any address and the op-

erating system and hardware do the hard work of translating to a physical address.

8.2. The TLB
The Translation Lookaside Buffer (or TLB for short) is the main component of the processor responsi-

ble for virtual-memory. It is a cache of virtual-page to physical-frame translations inside the processor.

The operating system and hardware work together to manage the TLB as the system runs.

as an offset from a segment at 0x00000000 and you would essentially have a flat layout -- but it

still isn't as good as virtual memory as you will see. In fact, the only reason it is 16 bits is because

the original Intel processors were limited to this, and the chips maintain backwards compatibility.

Computer Science from the Bottom Up

165

8.2.1. Page Faults

When a virtual address is requested of the hardware — say via a load instruction requesting to get

some data — the processor looks for the virtual-address to physical-address translation in its TLB. If it

has a valid translation it can then combine this with the offset portion to go straight to the physical ad-

dress and complete the load.

However, if the processor can not find a translation in the TLB, the processor must raise a page fault.

This is similar to an interrupt (as discussed before) which the operating system must handle.

When the operating system gets a page fault, it needs to go through its page-table to find the correct

translation and insert it into the TLB.

In the case that the operating system can not find a translation in the page table, or alternatively if the

operating system checks the permissions of the page in question and the process is not authorised to

access it, the operating system must kill the process. If you have ever seen a segmentation fault (or a

segfault) this is the operating system killing a process that has overstepped its bounds.

Should the translation be found, and the TLB currently be full, then one translation needs to be re-

moved before another can be inserted. It does not make sense to remove a translation that is likely to

be used in the future, as you will incur the cost of finding the entry in the page-tables all over again.

TLBs usually use something like a Least Recently Used or LRU algorithm, where the oldest transla-

tion that has not been used is ejected in favour of the new one.

The access can then be tried again, and, all going well, should be found in the TLB and translated cor-

rectly.

8.2.1.1. Finding the page table

When we say that the operating system finds the translation in the page table, it is logical to ask how

the operating system finds the memory that has the page table.

The base of the page table will be kept in a register associated with each process. This is usually called

the page-table base-register or similar. By taking the address in this register and adding the page num-

ber to it, the correct entry can be located.

8.2.2. Other page related faults

There are two other important faults that the TLB can generally generate which help to mange ac-

cessed and dirty pages. Each page generally contains an attribute in the form of a single bit which

Computer Science from the Bottom Up

166

flags if the page has been accessed or is dirty.

An accessed page is simply any page that has been accessed. When a page translation is initially

loaded into the TLB the page can be marked as having been accessed (else why were you loading it

in?1)

The operating system can periodically go through all the pages and clear the accessed bit to get an idea

of what pages are currently in use. When system memory becomes full and it comes time for the oper-

ating system to choose pages to be swapped out to disk, obviously those pages whose accessed bit has

not been reset are the best candidates for removal, because they have not been used the longest.

A dirty page is one that has data written to it, and so does not match any data already on disk. For ex-

ample, if a page is loaded in from swap and then written to by a process, before it can be moved out of

swap it needs to have its on disk copy updated. A page that is clean has had no changes, so we do not

need the overhead of copying the page back to disk.

Both are similar in that they help the operating system to manage pages. The general concept is that a

page has two extra bits; the dirty bit and the accessed bit. When the page is put into the TLB, these bits

are set to indicate that the CPU should raise a fault .

When a process tries to reference memory, the hardware does the usual translation process. However,

it also does an extra check to see if the accessed flag is not set. If so, it raises a fault to the operating

system, which should set the bit and allow the process to continue. Similarly if the hardware detects

that it is writing to a page that does not have the dirty bit set, it will raise a fault for the operating sys-

tem to mark the page as dirty.

8.3. TLB Management
We can say that the TLB used by the hardware but managed by software. It is up to the operating sys-

tem to load the TLB with correct entries and remove old entries.

8.3.1. Flushing the TLB

The process of removing entries from the TLB is called flushing. Updating the TLB is a crucial part of

1. Actually, if you were loading it in without a pending access this would be called speculation, which

is where you do something with the expectation that it will pay off. For example, if code was reading

along memory linearly putting the next page translation in the TLB might save time and give a per-

formance improvement.

Computer Science from the Bottom Up

167

maintaining separate address spaces for processes; since each process can be using the same virtual

address not updating the TLB would mean a process might end up overwriting another processes

memory (conversely, in the case of threads sharing the address-space is what you want, thus the TLB

is not flushed when switching between threads in the same process).

On some processors, every time there is a context switch the entire TLB is flushed. This can be quite

expensive, since this means the new process will have to go through the whole process of taking a

page fault, finding the page in the page tables and inserting the translation.

Other processors implement an extra address space ID (ASID) which is added to each TLB translation

to make it unique. This means each address space (usually each process, but remember threads want to

share the same address space) gets its own ID which is stored along with any translations in the TLB.

Thus on a context switch the TLB does not need to be flushed, since the next process will have a dif-

ferent address space ID and even if it asks for the same virtual address, the address space ID will differ

and so the translation to physical page will be different. This scheme reduces flushing and increases

overall system performance, but requires more TLB hardware to hold the ASID bits.

Generally, this is implemented by having an additional register as part of the process state that includes

the ASID. When performing a virtual-to-physical translation, the TLB consults this register and will

only match those entries that have the same ASID as the currently running process. Of course the

width of this register determines the number of ASID's available and thus has performance implica-

tions. For an example of ASID's in a processor architecture see Section 10.2.1, “Address spaces”.

8.3.2. Hardware v Software loaded TLB

While the control of what ends up in the TLB is the domain of the operating system; it is not the whole

story. The process described in Section 8.2.1, “Page Faults” describes a page-fault being raised to the

operating system, which traverses the page-table to find the virtual-to-physical translation and installs

it in the TLB. This would be termed a software-loaded TLB — but there is another alternative; the

hardware-loaded TLB.

In a hardware loaded TLB, the processor architecture defines a particular layout of page-table informa-

tion (Section 5, “Pages + Frames = Page Tables” which must be followed for virtual address transla-

tion to proceed. In response to access to a virtual-address that is not present in the TLB, the processor

will automatically walk the page-tables to load the correct translation entry. Only if the translation en-

try does not exist will the processor raise an exception to be handled by the operating system.

Implementing the page-table traversal in specialised hardware gives speed advantages when finding

Computer Science from the Bottom Up

168

translations, but removes flexibility from operating-systems implementors who might like to imple-

ment alternative schemes for page-tables.

All architectures can be broadly categorised into these two methodologies. Later, we will examine

some common architectures and their virtual-memory support.

9. Linux Specifics

Although the basic concepts of virtual memory remain constant, the specifics of implementations are

highly dependent on the operating system and hardware.

9.1. Address Space Layout
Linux divides the available address space up into a shared kernel component and private user space

addresses. This means that addresses in the kernel port of the address space map to the same physical

memory for each process, whilst user-space addresses are private to the process. On Linux, the shared

kernel space is at the very top of the available address space. On the most common processor, the 32

bit x86, this split happens at the 3GB point. As 32 bits can map a maximum of 4GB, this leaves the top

1GB for the shared kernel region1.

1. This is unfortunately an over-simplification, because many machines wanted to support more than

4GB per process. High memory support allows processors to get access to a full 4GB via special ex-

tensions.

Computer Science from the Bottom Up

169

Kernel

Process Process Process Process

Physical
Memory

Pr
oc

es
so

r A
dd

re
ss

 S
pa

ce
(Shared)

Kernel Space

User Space
(Private)

Pages

Physical Memory Frame

Figure 6.5. Linux address space layout

9.2. Three Level Page Table
There are many different ways for an operating system to organise the page tables but Linux chooses

to use a hierarchical system.

As the page tables use a hierarchy that is three levels deep, the Linux scheme is most commonly re-

ferred to as the three level page table. The three level page table has proven to be robust choice, al-

though it is not without its criticism. The details of the virtual memory implementation of each proces-

sor vary Whitley meaning that the generic page table Linux chooses must be portable and relatively

generic.

The concept of the three level page table is not difficult. We already know that a virtual address con-

Computer Science from the Bottom Up

170

sists of a page number and an offset in the physical memory page. In a three level page table, the virtu-

al address is further split up into a number levels.

Each level is a page table of its own right; i.e. it maps a page number of a physical page. In a single

level page table the "level 1" entry would directly map to the physical frame. In the multilevel version

each of the upper levels gives the address of the physical memory frame holding the next lower levels

page table.

Physical Page Frames

Level 1

Page Physical Page

Page Physical Page

Level 2

Page Physical Page

Page Physical Page

Level 3

Page Physical Page

Page Physical Page

Offset

Virtual Address

Level 3Level 2Level 1

Figure 6.6. Linux Three Level Page Table

So a sample reference involves going to the top level page table, finding the physical frame that the

next level address is on, reading that levels table and finding the physical frame that the next levels

page table lives on, and so on.

Computer Science from the Bottom Up

171

At first, this model seems to be needlessly complex. The main reason this model is implemented is for

size considerations. Imagine the theoretical situation of a process with only one single page mapped

right near the end of its virtual address space. We said before that the page table entry is found as an

offset from the page table base register, so the page table needs to be a contiguous array in memory. So

the single page near the end of the address space requires the entire array, which might take up consid-

erable space (many, many physical pages of memory).

In a three level system, the first level is only one physical frame of memory. This maps to a second

level, which is again only a single frame of memory, and again with the third. Consequently, the three

level system reduces the number of pages required to only a fraction of those required for the single

level system.

There are obvious disadvantages to the system. Looking up a single address takes more references,

which can be expensive. Linux understands that this system may not be appropriate on many different

types of processor, so each architecture can collapse the page table to have less levels easily (for ex-

ample, the most common architecture, the x86, only uses a two level system in its implementation).

10. Hardware support for virtual memory

As covered in Section 8.2, “The TLB”, the processor hardware provides a lookup-table that links virtu-

al addresses to physical addresses. Each processor architecture defines different ways to manage the

TLB with various advantages and disadvantages.

The part of the processor that deals with virtual memory is generally referred to as the Memory Man-

agement Unit or MMU

10.1. x86-64
XXX

10.2. Itanium
The Itanium MMU provides many interesting features for the operating system to work with virtual

memory.

Computer Science from the Bottom Up

172

10.2.1. Address spaces

Section 8.3.1, “Flushing the TLB” introduced the concept of the address-space ID to reduce the over-

heads of flushing the TLB when context switching. However, programmers often use threads to allow

execution contexts to share an address space. Each thread has the same ASID and hence shares TLB

entries, leading to increased performance. However, a single ASID prevents the TLB from enforcing

protection; sharing becomes an "all or nothing" approach. To share even a few bytes, threads must for-

go all protection from each other (see also Section 7.2, “Protection”).

Region 0

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6

Region 7

Protection Keys

Region Registers

Protection Keys

Region Registers

Shared Region0x1000 0x1000

Shared Key

Process 1 Process 2

Figure 6.7. Illustration Itanium regions and protection keys

The Itanium MMU considers these problems and provides the ability to share an address space (and

hence translation entries) at a much lower granularity whilst still maintaining protection within the

hardware. The Itanium divides the 64-bit address space up into 8 regions, as illustrated in Figure 6.7,

Computer Science from the Bottom Up

173

“Illustration Itanium regions and protection keys”. Each process has eight 24-bit region registers as

part of its state, which each hold a region ID (RID) for each of the eight regions of the process address

space. TLB translations are tagged with the RID and thus will only match if the process also holds this

RID, as illustrated in Figure 6.8, “Illustration of Itanium TLB translation”.

Region ID Key Virtual Page # (VPN) Rights Physical Page # (PPN)

Translation Lookaside Buffer (TLB)

Key Rights Protection
Key Registers

Virtual Address

Physical Page # (PPN)
Physical Address

Offset

Search Search

Search

Index Virtual
Page # (VPN)Virtual Region # (VRN)

Region Registers

Region ID

Figure 6.8. Illustration of Itanium TLB translation

Further to this, the top three bits (the region bits) are not considered in virtual address translation.

Therefore, if two processes share a RID (i.e., hold the same value in one of their region registers) then

they have an aliased view of that region. For example, if process-A holds RID 0x100 in region-regis-

ter 3 and process-B holds the same RID 0x100 in region-register 5 then process-A, region 3 is

aliased to process-B, region 5. This limited sharing means both processes receive the benefits of

shared TLB entries without having to grant access to their entire address space.

Computer Science from the Bottom Up

174

10.2.1.1. Protection Keys

To allow for even finer grained sharing, each TLB entry on the Itanium is also tagged with a protec-

tion key. Each process has an additional number of protection key registers under operating-system

control.

When a series of pages is to be shared (e.g., code for a shared system library), each page is tagged with

a unique key and the OS grants any processes allowed to access the pages that key. When a page is ref-

erenced the TLB will check the key associated with the translation entry against the keys the process

holds in its protection key registers, allowing the access if the key is present or otherwise raising a pro-

tection fault to the operating system.

The key can also enforce permissions; for example, one process may have a key which grants write

permissions and another may have a read-only key. This allows for sharing of translation entries in a

much wider range of situations with granularity right down to a single-page level, leading to large po-

tential improvements in TLB performance.

10.2.2. Itanium Hardware Page-Table Walker

Switching context to the OS when resolving a TLB miss adds significant overhead to the fault process-

ing path. To combat this, Itanium allows the option of using built-in hardware to read the page-table

and automatically load virtual-to-physical translations into the TLB. The hardware page-table walker

(HPW) avoids the expensive transition to the OS, but requires translations to be in a fixed format suit-

able for the hardware to understand.

The Itanium HPW is referred to in Intel's documentation as the virtually hashed page-table walker or

VHPT walker, for reasons which should become clear. Itanium gives developers the option of two mu-

tually exclusive HPW implementations; one based on a virtual linear page-table and the other based on

a hash table.

It should be noted it is possible to operate with no hardware page-table walker; in this case each TLB

miss is resolved by the OS and the processor becomes a software-loaded architecture. However, the

performance impact of disabling the HPW is so considerable it is very unlikely any benefit could be

gained from doing so

10.2.2.1. Virtual Linear Page-Table

The virtual linear page-table implementation is referred to in documentation as the short format virtu-

ally hashed page-table (SF-VHPT). It is the default HPW model used by Linux on Itanium.

Computer Science from the Bottom Up

175

The usual solution is a multi-level or hierarchical page-table, where the bits comprising the virtual

page number are used as an index into intermediate levels of the page-table (see Section 9.2, “Three

Level Page Table”). Empty regions of the virtual address space simply do not exist in the hierarchical

page-table. Compared to a linear page-table, for the (realistic) case of a tightly-clustered and sparsely-

filled address space, relatively little space is wasted in overheads. The major disadvantage is the multi-

ple memory references required for lookup.

Computer Science from the Bottom Up

176

0x123400

0x4000x123

0x1 0x2 0x3 0x400

Virtual Address

Virtual Page Number Offset

Page Global Directory Page Middle Directory Page Translation Entries

Page Size

Page Table Base

Fram
e

Free
Physical
Fram

e
Free
Fram

e

Figure 6.9. Illustration of a hierarchical page-table

With a 64-bit address space, even a 512~GiB linear table identified in Section 6.3, “Virtual Address

Translation” takes only 0.003% of the 16-exabytes available. Thus a virtual linear page-table (VLPT)

can be created in a contiguous area of virtual address space.

Computer Science from the Bottom Up

177

Just as for a physically linear page-table, on a TLB miss the hardware uses the virtual page number to

offset from the page-table base. If this entry is valid, the translation is read and inserted directly into

the TLB. However, with a VLPT the address of the translation entry is itself a virtual address and thus

there is the possibility that the virtual page which it resides in is not present in the TLB. In this case a

nested fault is raised to the operating system. The software must then correct this fault by mapping the

page holding the translation entry into the VLPT.

PGD

PTE's for a contiguous
region of virtual addresses

Conceptual view of a
hierarchial page table

Physical Frames Virtual Address Space

B
L
T

PMD PMD

PTE PTE

PMD

PGD

PTE

PTE

PTE

PTE

Figure 6.10. Itanium short-format VHPT implementation

This process can be made quite straight forward if the operating system keeps a hierarchical page-

table. The leaf page of a hierarchical page-table holds translation entries for a virtually contiguous re-

Computer Science from the Bottom Up

178

gion of addresses and can thus be mapped by the TLB to create the VLPT as described in Figure 6.10,

“Itanium short-format VHPT implementation”.

VPN

64 bits

VPN

Hash

PPN PPN

Tag

PKEY psize

Chain

4 x 64 bits

Short Format Long Format

Global VHPTPer-region VHPT

Figure 6.11. Itanium PTE entry formats

The major advantage of a VLPT occurs when an application makes repeated or contiguous accesses to

memory. Consider that for a walk of virtually contiguous memory, the first fault will map a page full

of translation entries into the virtual linear page-table. A subsequent access to the next virtual page

will require the next translation entry to be loaded into the TLB, which is now available in the VLPT

and thus loaded very quickly and without invoking the operating system. Overall, this will be an ad-

vantage if the cost of the initial nested fault is amortised over subsequent HPW hits.

The major drawback is that the VLPT now requires TLB entries which causes an increase on TLB

pressure. Since each address space requires its own page table the overheads become greater as the

system becomes more active. However, any increase in TLB capacity misses should be more than re-

gained in lower refill costs from the efficient hardware walker. Note that a pathological case could skip

over page_size ÷ translation_size entries, causing repeated nested faults, but this is a very un-

likely access pattern.

The hardware walker expects translation entries in a specific format as illustrated on the left of Fig-

ure 6.11, “Itanium PTE entry formats”. The VLPT requires translations in the so-called 8-byte short

format. If the operating system is to use its page-table as backing for the VLPT (as in Figure 6.10,

“Itanium short-format VHPT implementation”) it must use this translation format. The architecture

Computer Science from the Bottom Up

179

describes a limited number of bits in this format as ignored and thus available for use by software, but

significant modification is not possible.

A linear page-table is premised on the idea of a fixed page size. Multiple page-size support is problem-

atic since it means the translation for a given virtual page is no longer at a constant offset. To combat

this, each of the 8-regions of the address space (Figure 6.7, “Illustration Itanium regions and protec-

tion keys”) has a separate VLPT which only maps addresses for that region. A default page-size can be

given for each region (indeed, with Linux HugeTLB, discussed below, one region is dedicated to larg-

er pages). However, page sizes can not be mixed within a region.

10.2.2.2. Virtual Hash Table

Using TLB entries in an effort to reduce TLB refill costs, as done with the SF-VHPT, may or may not

be an effective trade-off. Itanium also implements a hashed page-table with the potential to lower TLB

overheads. In this scheme, the processor hashes a virtual address to find an offset into a contiguous

table.

The previously described physically linear page-table can be considered a hash page-table with a per-

fect hash function which will never produce a collision. However, as explained, this requires an im-

practical trade-off of huge areas of contiguous physical memory. However, constraining the memory

requirements of the page table raises the possibility of collisions when two virtual addresses hash to

the same offset. Colliding translations require a chain pointer to build a linked-list of alternative possi-

ble entries. To distinguish which entry in the linked-list is the correct one requires a tag derived from

the incoming virtual address.

The extra information required for each translation entry gives rise to the moniker long-format~VHPT

(LF-VHPT). Translation entries grow to 32-bytes as illustrated on the right hand side of Figure 6.11,

“Itanium PTE entry formats”.

The main advantage of this approach is the global hash table can be pinned with a single TLB entry.

Since all processes share the table it should scale better than the SF-VHPT, where each process re-

quires increasing numbers of TLB entries for VLPT pages. However, the larger entries are less cache

friendly; consider we can fit four 8-byte short-format entries for every 32-byte long-format entry. The

very large caches on the Itanium processor may help mitigate this impact, however.

One advantage of the SF-VHPT is that the operating system can keep translations in a hierarchical

page-table and, as long as the hardware translation format is maintained, can map leaf pages directly to

the VLPT. With the LF-VHPT the OS must either use the hash table as the primary source of transla-

Computer Science from the Bottom Up

180

tion entries or otherwise keep the hash table as a cache of its own translation information. Keeping the

LF-VHPT hash table as a cache is somewhat sub-optimal because of increased overheads on time crit-

ical fault paths, however advantages are gained from the table requiring only a single TLB entry.

Chapter 7. The Toolchain

1. Compiled v Interpreted Programs

1.1. Compiled Programs
So far we have discussed how a program is loaded into virtual memory, started as a process kept track

of by the operating system and interacts with via system calls.

A program that can be loaded directly into memory needs to be in a straight binary format. The

process of converting source code, written in a language such as C, to a binary file ready to be execut-

ed is called compiling. Not surprisingly, the process is done by a compiler; the most widespread exam-

ple being gcc.

1.2. Interpreted programs
Compiled programs have some disadvantages for modern software development. Every time a devel-

oper makes a change, the compiler must be invoked to recreate the executable file. It is a logical exten-

sion to design a compiled program that can read another program listing and execute the code line by

line.

We call this type of compiled program a interpreter because it interprets each line of the input file and

executes it as code. This way the program does not need to be compiled, and any changes will be seen

the next time the interpreter runs the code.

For their convenience, interpreted programs usually run slower than a compiled counterpart. The over-

head in the program reading and interpreting the code each time is only encountered once for a com-

piled program, whilst an interpreted program encounters it each time it is run.

But interpreted languages have many positive aspects. Many interpreted languages actually run in a

virtual machine that is abstracted from the underlying hardware. Python and Perl 6 are languages

that implement a virtual machine that interpreted code runs on.

Computer Science from the Bottom Up

181

1.2.1. Virtual Machines

A compiled program is completely dependent on the hardware of the machine it is compiled for, since

it must be able to simply be copied to memory and executed. A virtual machine is an abstraction of

hardware into software.

For example, Java is a hybrid language that is partly compiled and partly interpreted. Java code is

complied into a program that runs inside a Java Virtual Machine or more commonly referred to as a

JVM. This means that a compiled program can run on any hardware that has a JVM written for it; so

called write one, run anywhere.

2. Building an executable

When we talk about the compiler, there are actually three separate steps involved in creating the exe-

cutable file.

1. Compiling

2. Assembling

3. Linking

The components involved in this process are collectively called the toolchain because the tools chain

the output of one to the input of the other to create the final output.

Each link in the chain takes the source code progressively closer to being binary code suitable for exe-

cution.

3. Compiling

3.1. The process of compiling
The first step of compiling a source file to an executable file is converting the code from the high lev-

el, human understandable language to assembly code. We know from previous chapters than assembly

code works directly with the instructions and registers provided by the processor.

The compiler is the most complex step of process for a number of reasons. Firstly, humans are very

unpredictable and have their source code in many different forms. The compiler is only interested the

Computer Science from the Bottom Up

182

actual code, however humans need things like comments and whitespace (spaces, tabs, indents, etc) to

understand code. The process that the compiler takes to convert the human-written source code to its

internal representation is called parsing.

3.1.1. C code

With C code, there is actually a step before parsing the source code called the pre-processor. The pre-

processor is at its core a text replacement program. For example, any variable declared as #define

variable text will have variable replaced with text . This preprocessed code is then passed

into the compiler.

3.2. Syntax
Any computing language has a particular syntax that describes the rules of the language. Both you and

the compiler know the syntax rules, and all going well you will understand each other. Humans, being

as they are, often forget the rules or break them, leading the compiler to be unable to understand your

intentions. For example, if you were to leave the closing bracket off a if condition, the compiler

does not know where the actual conditional is.

Syntax is most often described in Backus-Naur Form (BNF)1 which is a language with which you can

describe languages!

3.3. Assembly Generation
The job of the compiler is to translate the higher level language into assembly code suitable for the tar-

get being compiled for. Obviously each different architecture has a different instruction set, different

numbers of registers and different rules for correct operation.

1. In fact the most common form is Extended Backus-Naur Form, or EBNF, as it allows some extra

rules which are more suitable for modern languages.

Computer Science from the Bottom Up

183

3.3.1. Alignment

0 4 8 12

Memory

CPU

Aligned Unaligned

Registers

Figure 7.1. Alignment

Alignment of variables in memory is an important consideration for the compiler. Systems program-

mers need to be aware of alignment constraints to help the compiler create the most efficient code it

can.

CPUs can generally not load a value into a register from an arbitrary memory location. It requires that

variables be aligned on certain boundaries. In the example above, we can see how a 32 bit (4 byte)

value is loaded into a register on a machine that requires 4 byte alignment of variables.

The first variable can be directly loaded into a register, as it falls between 4 byte boundaries. The sec-

ond variable, however, spans the 4 byte boundary. This means that at minimum two loads will be re-

quired to get the variable into a single register; firstly the lower half and then the upper half.

Some architectures, such as x86, can handle unaligned loads in hardware and the only symptoms will

be lower performance as the hardware does the extra work to get the value into the register. Others ar-

Computer Science from the Bottom Up

184

chitectures can not have alignment rules violated and will raise an exception which is generally caught

by the operating system which then has to manually load the register in parts, causing even more over-

heads.

3.3.1.1. Structure Padding

Programmers need to consider alignment especially when creating struct s. Whilst the compiler

knows the alignment rules for the architecture it is building for, at times programmers can cause sub-

optimal behaviour.

The C99 standard only says that structures will be ordered in memory in the same order as they are

specified in the declaration, and that in an array of structures all elements will be the same size.

1 $ cat struct.c

#include <stdio.h>

struct a_struct {

5 char char_one;

char char_two;

int int_one;

};

10 int main(void)

{

struct a_struct s;

Computer Science from the Bottom Up

185

15 printf("%p : s.char_one\n" \

"%p : s.char_two\n" \

"%p : s.int_one\n", &s.char_one,

&s.char_two, &s.int_one);

20 return 0;

}

$ gcc -o struct struct.c

25

$ gcc -fpack-struct -o struct-packed struct.c

$./struct

0x7fdf6798 : s.char_one

30 0x7fdf6799 : s.char_two

0x7fdf679c : s.int_one

$./struct-packed

Computer Science from the Bottom Up

186

0x7fcd2778 : s.char_one

35 0x7fcd2779 : s.char_two

0x7fcd277a : s.int_one

Example 7.1. Struct padding example

In the example above, we contrive a structure that has two bytes (chars followed by a 4 byte integer.

The compiler pads the structure as below.

0x7fdf6798 0x7fdf6799 0x7fdf679A 0x7fdf679B 0x7fdf679C 0x7fdf679D 0x7fdf679E 0x7fdf679F

s.int_one

s.char_two

s.char_one

Figure 7.2. Alignment

In the other example we direct the compiler not to pad structures and correspondingly we can see that

the integer starts directly after the two chars .

3.3.1.2. Cache line alignment

We talked previously about aliasing in the cache, and how several addresses may map to the same

cache line. Programmers need to be sure that when they write their programs they do not cause bounc-

ing of cache lines.

This situation occurs when a program constantly accesses two areas of memory that map to the same

cache line. This effectively wastes the cache line, as it gets loaded in, used for a short time and then

must be kicked out and the other cache line loaded into the same place in the cache.

Obviously if this situation repeats the performance will be significantly reduced. The situation would

be relieved if the conflicting data was organised in slightly different ways to avoid the cache line con-

flict.

One possible way to detect this sort of situation is profiling. When you profile your code you "watch"

it to analyse what code paths are taken and how long they take to execute. With profile guided optimi-

Computer Science from the Bottom Up

187

sation (PGO) the compiler can put special extra bits of code in the first binary it builds, which runs

and makes a record of the branches taken, etc. You can then recompile the binary with the extra infor-

mation to possibly create a better performing binary. Otherwise the programmer can look at the output

of the profile and possibly detect situations such as cache line bouncing. (XXX somewhere else?)

3.3.1.3. Space - Speed Trade off

What the compiler has done above is traded off using some extra memory to gain a speed improve-

ment in running our code. The compiler knows the rules of the architecture and can make decisions

about the best way to align data, possibly by trading off small amounts of wasted memory for in-

creased (or perhaps even just correct) performance.

Consequently as a programmer you should never make assumptions about the way variables and data

will be laid out by the compiler. To do so is not portable, as a different architecture may have different

rules and the compiler may make different decisions based on explicit commands or optimisation lev-

els.

3.3.1.4. Making Assumptions

Thus, as a C programmer you need to be familiar with what you can assume about what the compiler

will do and what may be variable. What exactly you can assume and can not assume is detailed in the

C99 standard; if you are programming in C it is certainly worth the investment in becoming familiar

with the rules to avoid writing non-portable or buggy code.

1 $ cat stack.c

#include <stdio.h>

struct a_struct {

5 int a;

int b;

};

Computer Science from the Bottom Up

188

int main(void)

10 {

int i;

struct a_struct s;

printf("%p\n%p\ndiff %ld\n", &i, &s, (unsigned long)&s - (unsigned long)&i);

return 0;

15 }

$ gcc-3.3 -Wall -o stack-3.3 ./stack.c

$ gcc-4.0 -o stack-4.0 stack.c

$./stack-3.3

20 0x60000fffffc2b510

0x60000fffffc2b520

diff 16

$./stack-4.0

25 0x60000fffff89b520

0x60000fffff89b524

Computer Science from the Bottom Up

189

diff 4

Example 7.2. Stack alignment example

In the example above, taken from an Itanium machine, we can see that the padding and alignment of

the stack has changed considerably between gcc versions. This type of thing is to be expected and

must be considered by the programmer.

Generally you should ensure that you do not make assumptions about the size of types or alignment

rules.

3.3.1.5. C Idioms with alignment

There are a few common sequences of code that deal with alignment; generally most programs will

consider it in some ways. You may see these "code idioms" in many places outside the kernel when

dealing with programs that deal with chunks of data in some form or another, so it is worth investigat-

ing.

We can take some examples from the Linux kernel, which often has to deal with alignment of pages of

memory within the system.

1 [include/asm-ia64/page.h]

/*

* PAGE_SHIFT determines the actual kernel page size.

5 */

#if defined(CONFIG_IA64_PAGE_SIZE_4KB)

define PAGE_SHIFT 12

#elif defined(CONFIG_IA64_PAGE_SIZE_8KB)

define PAGE_SHIFT 13

Computer Science from the Bottom Up

190

10 #elif defined(CONFIG_IA64_PAGE_SIZE_16KB)

define PAGE_SHIFT 14

#elif defined(CONFIG_IA64_PAGE_SIZE_64KB)

define PAGE_SHIFT 16

#else

15 # error Unsupported page size!

#endif

#define PAGE_SIZE (__IA64_UL_CONST(1) << PAGE_SHIFT)

#define PAGE_MASK (~(PAGE_SIZE - 1))

20 #define PAGE_ALIGN(addr) (((addr) + PAGE_SIZE - 1) & PAGE_MASK)

Example 7.3. Page alignment manipulations

Above we can see that there are a number of different options for page sizes within the kernel, ranging

from 4KB through 64KB.

The PAGE_SIZE macro is fairly self explanatory, giving the current page size selected within the sys-

tem by shifting a value of 1 by the shift number given (remember, this is the equivalent of saying 2n

where n is the PAGE_SHIFT).

Next we have a definition for PAGE_MASK . The PAGE_MASK allows us to find just those bits that are

within the current page, that is the offset of an address within its page.

XXX continue short discussion

3.4. Optimisation
Once the compiler has an internal representation of the code, the really interesting part of the compiler

Computer Science from the Bottom Up

191

starts. The compiler wants to find the most optimised assembly language output for the given input

code. This is a large and varied problem and requires knowledge of everything from efficient algo-

rithms based in computer science to deep knowledge about the particular processor the code is to be

run on.

There are some common optimisations the compiler can look at when generating output. There are

many, many more strategies for generating the best code, and it is always an active research area.

3.4.1. General Optimising

The compiler can often see that a particular piece of code can not be used and so leave it out optimise

a particular language construct into something smaller with the same outcome.

3.4.2. Unrolling loops

If code contains a loop, such as a for or while loop and the compiler has some idea how many

times it will execute, it may be more efficient to unroll the loop so that it executes sequentially. This

means that instead of doing the inside of the loop and then branching back to the start to do repeat the

process, the inner loop code is duplicated to be executed again.

Whilst this increases the size of the code, it may allow the processor to work through the instructions

more efficiently as branches can cause inefficiencies in the pipeline of instructions coming into the

processor.

3.4.3. Inlining functions

Similar to unrolling loops, it is possible to put embed called functions within the callee. The program-

mer can specify that the compiler should try to do this by specifying the function as inline in the

function definition. Once again, you may trade code size for sequentially in the code by doing this.

3.4.4. Branch Prediction

Any time the computer comes across an if statement there are two possible outcomes; true or false.

The processor wants to keep its incoming pipes as full as possible, so it can not wait for the outcome

of the test before putting code into the pipeline.

Thus the compiler can make a prediction about what way the test is likely to go. There are some sim-

ple rules the compiler can use to guess things like this, for example if (val == -1) is probably not

Computer Science from the Bottom Up

192

likely to be true, since -1 usually indicates an error code and hopefully that will not be triggered too

often.

Some compilers can actually compile the program, have the user run it and take note of which way the

branches go under real conditions. It can then re-compile it based on what it has seen.

4. Assembler

The assembly code outputted by the compiler is still in a human readable form, should you know the

specifics of the assembly code for the processor. Developers will often take a peek at the assembly

output to manually check that the code is the most optimised or to discover any bugs in the compiler

(this is more common than one might think, especially when the compiler is being very aggressive

with optimisations).

The assembler is a more mechanical process of converting the assembly code into a binary form. Es-

sentially, the assembler keeps a large table of each possible instruction and its binary counterpart

(called an op code for operation code). It combines these opcodes with the registers specified in the as-

sembly to produce a binary output file.

This code is called object code and, at this stage, is not executable. Object code is simply a binary rep-

resentation of specific input source code file. Good programming practice dictates that a programmer

should not "put all the eggs in one basket" by placing all your source code in one file.

5. Linker

Often in a large program, you will separate out code into multiple files to keep related functions to-

gether. Each of these files can be compiled into object code: but your final goal is to create a single ex-

ecutable! There needs to be some way combining each of these object files into a single executable.

We call this linking.

Note that even if your program does fit in one file it still needs to be linked against certain system li-

braries to operate correctly. For example, the printf call is kept in a library which must be com-

bined with your executable to work. So although you do not explicitly have to worry about linking in

this case, there is most certainly still a linking process happening to create your executable.

In the following sections we explain some terms essential to understanding linking.

Computer Science from the Bottom Up

193

5.1. Symbols

5.1.1. Symbols

Variables and functions all have names in source code which we refer to them by. One way of thinking

of a statement declaring a variable int a is that you are telling the compiler "set aside some memory

of sizeof(int) and from now on when I use a it will refer to this allocated memory. Similarly a

function says "store this code in memory, and when I call function() jump to and execute this

code".

In this case, we call a and function symbols since they are a symbolic representation of an area of

memory.

Symbols help humans to understand programming. You could say that the primary job of the compila-

tion process is to remove symbols -- the processor doesn't know what a represents, all it knows is

that it has some data at a particular memory address. The compilation process needs to convert a +=

2 to something like "increment the value in memory at 0xABCDE by 2.

5.1.2. Symbol Visibility

In some C programs, you may have seen the terms static and extern used with variables. These

modifiers can effect what we call the visibility of symbols.

Imagine you have split up your program in two files, but some functions need to share a variable. You

only want one definition (i.e. memory location) of the shared variable (otherwise it wouldn't be

shared!), but both files need to reference it.

To enable this, we declare the variable in one file, and then in the other file declare a variable of the

same name but with the prefix extern . extern stands for external and to a human means that this

variable is declared somewhere else.

What extern says to a compiler is that it should not allocate any space in memory for this variable,

and leave this symbol in the object code where it will be fixed up later. The compiler can not possibly

know where the symbol is actually defined but the linkerdoes, since it is its job to look at all object

files together and combine them into a single executable. So the linker will see the symbol left over in

the second file, and say "I've seen that symbol before in file 1, and I know that it refers to memory lo-

cation 0x12345 ". Thus it can modify the symbol value to be the memory value of the variable in the

first file.

Computer Science from the Bottom Up

194

static is almost the opposite of extern . It places restrictions on the visibility of the symbol it

modifies. If you declare a variable with static that says to the compiler "don't leave any symbols

for this in the object code". This means that when the linker is linking together object files it will never

see that symbol (and so can't make that "I've seen this before!" connection). static is good for sepa-

ration and reducing conflicts -- by declaring a variable static you can reuse the variable name in

other files and not end up with symbol clashes. We say we are restricting the visibility of the symbol,

because we are not allowing the linker to see it. Contrast this with a more visible symbol (one not de-

clared with static) which can be seen by the linker.

5.2. The linking process
Thus the linking process is really two steps; combining all object files into one executable file and

then going through each object file to resolve any symbols. This usually requires two passes; one to

read all the symbol definitions and take note of unresolved symbols and a second to fix up all those

unresolved symbols to the right place.

The final executable should end up with no unresolved symbols; the linker will fail with an error if

there are any.1

6. A practical example

We can walk through the steps taken to build a simple application step by step.

Note that when you type gcc that actually runs a driver program that hides most of the steps from

you. Under normal circumstances this is exactly what you want, because the exact commands and op-

tions to get a real life working executable on a real system can be quite complicated and architecture

specific.

We will show the compilation process with the two following examples. Both are C source files, one

defined the main() function for the initial program entry point, and another declares a helper type

function. There is one global variable too, just for illustration.

1. We call this static linking. Dynamic linking is a similar concept done at executable runtime, and is

described a little later on.

Computer Science from the Bottom Up

195

1 #include <stdio.h>

/* We need a prototype so the compiler knows what types function() takes */

int function(char *input);

5

/* Since this is static, we can define it in both hello.c and function.c */

static int i = 100;

/* This is a global variable */

10 int global = 10;

int main(void)

{

/* function() should return the value of global */

15 int ret = function("Hello, World!");

exit(ret);

}

Example 7.4. Hello World

1 #include <stdio.h>

Computer Science from the Bottom Up

196

static int i = 100;

5 /* Declard as extern since defined in hello.c */

extern int global;

int function(char *input)

{

10 printf("%s\n", input);

return global;

}

Example 7.5. Function Example

6.1. Compiling
All compilers have an option to only execute the first step of compilation. Usually this is something

like -S and the output will generally be put into a file with the same name as the input file but with a

.s extension.

Thus we can show the first step with gcc -S as illustrated in the example below.

1 $ gcc -S hello.c

$ gcc -S function.c

$ cat function.s

Computer Science from the Bottom Up

197

.file "function.c"

5 .pred.safe_across_calls p1-p5,p16-p63

.section .sdata,"aw",@progbits

.align 4

.type i#, @object

.size i#, 4

10 i:

data4 100

.section .rodata

.align 8

.LC0:

15 stringz "%s\n"

.text

.align 16

.global function#

.proc function#

20 function:

.prologue 14, 33

.save ar.pfs, r34

alloc r34 = ar.pfs, 1, 4, 2, 0

Computer Science from the Bottom Up

198

.vframe r35

25 mov r35 = r12

adds r12 = -16, r12

mov r36 = r1

.save rp, r33

mov r33 = b0

30 .body

;;

st8 [r35] = r32

addl r14 = @ltoffx(.LC0), r1

;;

35 ld8.mov r37 = [r14], .LC0

ld8 r38 = [r35]

br.call.sptk.many b0 = printf#

mov r1 = r36

;;

40 addl r15 = @ltoffx(global#), r1

;;

ld8.mov r14 = [r15], global#

;;

Computer Science from the Bottom Up

199

ld4 r14 = [r14]

45 ;;

mov r8 = r14

mov ar.pfs = r34

mov b0 = r33

.restore sp

50 mov r12 = r35

br.ret.sptk.many b0

;;

.endp function#

.ident "GCC: (GNU) 3.3.5 (Debian 1:3.3.5-11)"

Example 7.6. Compilation Example

The assembly is a little to complex to fully describe, but you should be able to see where i is defined

as a data4 (i.e. 4 bytes or 32 bits, the size of an int), where function is defined (function:)

and a call to printf() .

We now have two assembly files ready to be assembled into machine code!

6.2. Assembly
Assembly is a fairly straight forward process. The assembler is usually called as and takes argu-

ments in a similar fashion to gcc

$ as -o function.o function.s

Computer Science from the Bottom Up

200

$ as -o hello.o hello.s

$ ls

function.c function.o function.s hello.c hello.o hello.s

Example 7.7. Assembly Example

After assembling we have object code, which is ready to be linked together into the final executable.

You can usually skip having to use the assembler by hand by calling the compiler with -c , which

will directly convert the input file to object code, putting it in a file with the same prefix but .o as an

extension.

We can't inspect the object code directly, as it is in a binary format (in future weeks we will learn about

this binary format). However we can use some tools to inspect the object files, for example readelf

--symbols will show us symbols in the object file.

1 $ readelf --symbols ./hello.o

Symbol table '.symtab' contains 15 entries:

Num: Value Size Type Bind Vis Ndx Name

5 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FILE LOCAL DEFAULT ABS hello.c

2: 0000000000000000 0 SECTION LOCAL DEFAULT 1

3: 0000000000000000 0 SECTION LOCAL DEFAULT 3

4: 0000000000000000 0 SECTION LOCAL DEFAULT 4

10 5: 0000000000000000 0 SECTION LOCAL DEFAULT 5

6: 0000000000000000 4 OBJECT LOCAL DEFAULT 5 i

Computer Science from the Bottom Up

201

7: 0000000000000000 0 SECTION LOCAL DEFAULT 6

8: 0000000000000000 0 SECTION LOCAL DEFAULT 7

9: 0000000000000000 0 SECTION LOCAL DEFAULT 8

15 10: 0000000000000000 0 SECTION LOCAL DEFAULT 10

11: 0000000000000004 4 OBJECT GLOBAL DEFAULT 5 global

12: 0000000000000000 96 FUNC GLOBAL DEFAULT 1 main

13: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND function

14: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND exit

20

$ readelf --symbols ./function.o

Symbol table '.symtab' contains 14 entries:

Num: Value Size Type Bind Vis Ndx Name

25 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FILE LOCAL DEFAULT ABS function.c

2: 0000000000000000 0 SECTION LOCAL DEFAULT 1

3: 0000000000000000 0 SECTION LOCAL DEFAULT 3

4: 0000000000000000 0 SECTION LOCAL DEFAULT 4

30 5: 0000000000000000 0 SECTION LOCAL DEFAULT 5

6: 0000000000000000 4 OBJECT LOCAL DEFAULT 5 i

Computer Science from the Bottom Up

202

7: 0000000000000000 0 SECTION LOCAL DEFAULT 6

8: 0000000000000000 0 SECTION LOCAL DEFAULT 7

9: 0000000000000000 0 SECTION LOCAL DEFAULT 8

35 10: 0000000000000000 0 SECTION LOCAL DEFAULT 10

11: 0000000000000000 128 FUNC GLOBAL DEFAULT 1 function

12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND printf

13: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND global

Example 7.8. Readelf Example

Although the output is quite complicated (again!) you should be able to understand much of it. For ex-

ample

• In the output of hello.o have a look at the symbol with name i . Notice how it says it is

LOCAL ? That is because we declared it static and as such it has been flagged as being lo-

cal to this object file.

• In the same output, notice that the global variable is defined as a GLOBAL , meaning that it

is visible outside this file. Similarly the main() function is externally visible.

• Notice that the function symbol (for the call to function() is left has UND or unde-

fined. This means that it has been left for the linker to find the address of the function.

• Have a look at the symbols in the function.c file and how they fit into the output.

6.3. Linking
Actually invoking the linker, called ld , is a very complicated process on a real system (are you sick

of hearing this yet?). This is why we leave the linking process up to gcc .

But of course we can spy on what gcc is doing under the hood with the -v (verbose) flag.

Computer Science from the Bottom Up

203

1 /usr/lib/gcc-lib/ia64-linux/3.3.5/collect2 -static

/usr/lib/gcc-lib/ia64-linux/3.3.5/../../../crt1.o

/usr/lib/gcc-lib/ia64-linux/3.3.5/../../../crti.o

/usr/lib/gcc-lib/ia64-linux/3.3.5/crtbegin.o

5 -L/usr/lib/gcc-lib/ia64-linux/3.3.5

-L/usr/lib/gcc-lib/ia64-linux/3.3.5/../../..

hello.o

function.o

--start-group

10 -lgcc

-lgcc_eh

-lunwind

-lc

--end-group

15 /usr/lib/gcc-lib/ia64-linux/3.3.5/crtend.o

/usr/lib/gcc-lib/ia64-linux/3.3.5/../../../crtn.o

Example 7.9. Linking Example

The first thing you notice is that a program called collect2 is being called. This is a simple wrapper

around ld that is used internally by gcc.

The next thing you notice is object files starting with crt being specified to the linker. These func-

tions are provided by gcc and the system libraries and contain code required to start the program. In

Computer Science from the Bottom Up

204

actuality, the main() function is not the first one called when a program runs, but a function called

_start which is in the crt object files. This function does some generic setup which application

programmers do not need to worry about.

The path hierarchy is quite complicated, but in essence we can see that the final step is to link in some

extra object files, namely

• crt1.o : provided by the system libraries (libc) this object file contains the _start func-

tion which is actually the first thing called within the program.

crti.o : provided by the system libraries

crtbegin.o

crtsaveres.o

crtend.o

crtn.o

We discuss how these are used to start the program a little later.

Next you can see that we link in our two object files, hello.o and function.o . After that we

specify some extra libraries with -l flags. These libraries are system specific and required for every

program. The major one is -lc which brings in the C library, which has all common functions like

printf() .

After that we again link in some more system object files which do some cleanup after programs exit.

Although the details are complicated, the concept is straight forward. All the object files will be linked

together into a single executable file, ready to run!

6.4. The Executable
We will go into more details about the executable in the short future, but we can do some inspection in

a similar fashion to the object files to see what has happened.

1 ianw@lime:~/programs/csbu/wk7/code$ gcc -o program hello.c function.c

Computer Science from the Bottom Up

205

ianw@lime:~/programs/csbu/wk7/code$ readelf --symbols ./program

Symbol table '.dynsym' contains 11 entries:

5 Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 6000000000000de0 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC

2: 0000000000000000 176 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.2 (2)

3: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS __bss_start

10 4: 0000000000000000 704 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.2 (2)

5: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS _edata

6: 6000000000000fe8 0 OBJECT GLOBAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_ 7: 60000000000010b0 0 NOTYPE GLOBAL DEFAULT ABS _end

8: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

9: 0000000000000000 544 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2 (2)

15 10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Symbol table '.symtab' contains 127 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

20 1: 40000000000001c8 0 SECTION LOCAL DEFAULT 1

2: 40000000000001e0 0 SECTION LOCAL DEFAULT 2

Computer Science from the Bottom Up

206

3: 4000000000000200 0 SECTION LOCAL DEFAULT 3

4: 4000000000000240 0 SECTION LOCAL DEFAULT 4

5: 4000000000000348 0 SECTION LOCAL DEFAULT 5

25 6: 40000000000003d8 0 SECTION LOCAL DEFAULT 6

7: 40000000000003f0 0 SECTION LOCAL DEFAULT 7

8: 4000000000000410 0 SECTION LOCAL DEFAULT 8

9: 4000000000000440 0 SECTION LOCAL DEFAULT 9

10: 40000000000004a0 0 SECTION LOCAL DEFAULT 10

30 11: 40000000000004e0 0 SECTION LOCAL DEFAULT 11

12: 40000000000005e0 0 SECTION LOCAL DEFAULT 12

13: 4000000000000b00 0 SECTION LOCAL DEFAULT 13

14: 4000000000000b40 0 SECTION LOCAL DEFAULT 14

15: 4000000000000b60 0 SECTION LOCAL DEFAULT 15

35 16: 4000000000000bd0 0 SECTION LOCAL DEFAULT 16

17: 4000000000000ce0 0 SECTION LOCAL DEFAULT 17

18: 6000000000000db8 0 SECTION LOCAL DEFAULT 18

19: 6000000000000dd0 0 SECTION LOCAL DEFAULT 19

20: 6000000000000dd8 0 SECTION LOCAL DEFAULT 20

40 21: 6000000000000de0 0 SECTION LOCAL DEFAULT 21

22: 6000000000000fc0 0 SECTION LOCAL DEFAULT 22

Computer Science from the Bottom Up

207

23: 6000000000000fd0 0 SECTION LOCAL DEFAULT 23

24: 6000000000000fe0 0 SECTION LOCAL DEFAULT 24

25: 6000000000000fe8 0 SECTION LOCAL DEFAULT 25

45 26: 6000000000001040 0 SECTION LOCAL DEFAULT 26

27: 6000000000001080 0 SECTION LOCAL DEFAULT 27

28: 60000000000010a0 0 SECTION LOCAL DEFAULT 28

29: 60000000000010a8 0 SECTION LOCAL DEFAULT 29

30: 0000000000000000 0 SECTION LOCAL DEFAULT 30

50 31: 0000000000000000 0 SECTION LOCAL DEFAULT 31

32: 0000000000000000 0 SECTION LOCAL DEFAULT 32

33: 0000000000000000 0 SECTION LOCAL DEFAULT 33

34: 0000000000000000 0 SECTION LOCAL DEFAULT 34

35: 0000000000000000 0 SECTION LOCAL DEFAULT 35

55 36: 0000000000000000 0 SECTION LOCAL DEFAULT 36

37: 0000000000000000 0 SECTION LOCAL DEFAULT 37

38: 0000000000000000 0 SECTION LOCAL DEFAULT 38

39: 0000000000000000 0 SECTION LOCAL DEFAULT 39

40: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

60 41: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

42: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

Computer Science from the Bottom Up

208

43: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

44: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

45: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

65 46: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

47: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

48: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

49: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

50: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S

70 51: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

52: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S

53: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

54: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S

55: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

75 56: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

57: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

58: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

59: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S

60: 0000000000000000 0 FILE LOCAL DEFAULT ABS init.c

80 61: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

62: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

Computer Science from the Bottom Up

209

63: 0000000000000000 0 FILE LOCAL DEFAULT ABS initfini.c

64: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

65: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

85 66: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

67: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

68: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

69: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

70: 4000000000000670 128 FUNC LOCAL DEFAULT 12 gmon_initializer

90 71: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

72: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

73: 0000000000000000 0 FILE LOCAL DEFAULT ABS initfini.c

74: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

75: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

95 76: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

77: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

78: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

79: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

80: 0000000000000000 0 FILE LOCAL DEFAULT ABS auto-host.h

100 81: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

82: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

Computer Science from the Bottom Up

210

83: 6000000000000fc0 0 NOTYPE LOCAL DEFAULT 22 __CTOR_LIST__

84: 6000000000000fd0 0 NOTYPE LOCAL DEFAULT 23 __DTOR_LIST__

85: 6000000000000fe0 0 NOTYPE LOCAL DEFAULT 24 __JCR_LIST__

105 86: 6000000000001088 8 OBJECT LOCAL DEFAULT 27 dtor_ptr

87: 40000000000006f0 128 FUNC LOCAL DEFAULT 12 __do_global_dtors_aux

88: 4000000000000770 128 FUNC LOCAL DEFAULT 12 __do_jv_register_classes

89: 0000000000000000 0 FILE LOCAL DEFAULT ABS hello.c

90: 6000000000001090 4 OBJECT LOCAL DEFAULT 27 i

110 91: 0000000000000000 0 FILE LOCAL DEFAULT ABS function.c

92: 6000000000001098 4 OBJECT LOCAL DEFAULT 27 i

93: 0000000000000000 0 FILE LOCAL DEFAULT ABS auto-host.h

94: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

95: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

115 96: 6000000000000fc8 0 NOTYPE LOCAL DEFAULT 22 __CTOR_END__

97: 6000000000000fd8 0 NOTYPE LOCAL DEFAULT 23 __DTOR_END__

98: 6000000000000fe0 0 NOTYPE LOCAL DEFAULT 24 __JCR_END__

99: 6000000000000de0 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC

100: 4000000000000a70 144 FUNC GLOBAL HIDDEN 12 __do_global_ctors_aux

120 101: 6000000000000dd8 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_end

102: 60000000000010a8 8 OBJECT GLOBAL HIDDEN 29 __dso_handle

Computer Science from the Bottom Up

211

103: 40000000000009a0 208 FUNC GLOBAL DEFAULT 12 __libc_csu_fini

104: 0000000000000000 176 FUNC GLOBAL DEFAULT UND printf@@GLIBC_2.2

105: 40000000000004a0 32 FUNC GLOBAL DEFAULT 10 _init

125 106: 4000000000000850 128 FUNC GLOBAL DEFAULT 12 function

107: 40000000000005e0 144 FUNC GLOBAL DEFAULT 12 _start

108: 6000000000001094 4 OBJECT GLOBAL DEFAULT 27 global

109: 6000000000000dd0 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_start

110: 40000000000008d0 208 FUNC GLOBAL DEFAULT 12 __libc_csu_init

130 111: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS __bss_start

112: 40000000000007f0 96 FUNC GLOBAL DEFAULT 12 main

113: 6000000000000dd0 0 NOTYPE GLOBAL DEFAULT ABS __init_array_end

114: 6000000000000dd8 0 NOTYPE WEAK DEFAULT 20 data_start

115: 4000000000000b00 32 FUNC GLOBAL DEFAULT 13 _fini

135 116: 0000000000000000 704 FUNC GLOBAL DEFAULT UND exit@@GLIBC_2.2

117: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS _edata

118: 6000000000000fe8 0 OBJECT GLOBAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_

119: 60000000000010b0 0 NOTYPE GLOBAL DEFAULT ABS _end

120: 6000000000000db8 0 NOTYPE GLOBAL DEFAULT ABS __init_array_start

140 121: 6000000000001080 4 OBJECT GLOBAL DEFAULT 27 _IO_stdin_used

122: 60000000000010a0 8 OBJECT GLOBAL DEFAULT 28 __libc_ia64_register_back

Computer Science from the Bottom Up

212

123: 6000000000000dd8 0 NOTYPE GLOBAL DEFAULT 20 __data_start

124: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

125: 0000000000000000 544 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_

145 126: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Example 7.10. Executable Example

Some things to note

• Note I built the executable the "easy" way!

• See there are two symbol tables; the dynsym and symtab ones. We explain how the dyn-

sym symbols work soon, but notice that some of them are versioned with an @ symbol.

• Note the many symbols that have been included from the extra object files. Many of them

start with __ to avoid clashing with any names the programmer might choose. Read through

and pick out the symbols we mentioned before from the object files and see if they have

changed in any way.

Chapter 8. Behind the process

1. Review of executable files

We know that a program running in memory has two major components in code (also commonly

known as a text for historical reasons) and data. We also know, however, an executable does not live

its life in memory, but spends most of its life as a file on a disk waiting to be loaded an run. Since a

file is, in essence, simply a contiguous array of bits, all systems come up with methods of organising

code and data within files for on-demand execution. This file-format is generally referred to as a bina-

ry or an executable. The bits and bytes of the file are generally in a format ready to be placed in mem-

ory and interpreted directly by processor hardware.

Computer Science from the Bottom Up

213

2. Representing executable files

2.1. Three Standard Sections
At a minimum, any executable file format will need to specify where the code and data are in the bina-

ry file. These are the two primary sections within an executable file.

One additional component we have not mentioned until now is storage space of uninitialised global

variables. If we declare a variable and give it an initial value, this value needs to be stored in the exe-

cutable file so that at program start it can be initalised to the correct value. However many variables

are uninitialised (or zero) when the program is first executed. Making space for these in the executable

and then simply storing zero or NULL values is a waste of space, needlessly bloating the executable

file-size on disk. Thus most binary formats define the concept of a additional BSS section as a place-

holder size for zeroed, uninitialised data. On program load the extra memory described by the BSS can

be allocated (and set to zero!). BSS probably stands for Block Started by Symbol, an assembly com-

mand for a old IBM computer; the exact derivation is probably lost to history.

2.2. Binary Format
The executable is created by the toolchain from the source code. This file needs to be in a format ex-

plicitly defined such that the compiler can create it and the operating system can identify it and load

into memory, turning it into a running process that the operating system can manage. This executable

file format can be specific to the operating system, as we would not normally expect that a program

compiled for one system will execute on another (for example, you don't expect your Windows pro-

grams to run on Linux, or your Linux programs to run on OS X).

However, the common thread between all executable file formats is that they include a predefined,

standardised header which describes how program code and data are stored in the rest of the file. In

words, it would generally describe "the program code starts 20 bytes into this file, and is 50 kilobytes

long. The program data follows it and is 20 kilobytes long".

In recent times one particular format has become the de facto standard for executable representation

for modern UNIX type systems. It is called the Executable and Linker Format , or ELF for short;

we'll be looking at it in more detail soon.

Computer Science from the Bottom Up

214

2.3. Binary Format History

2.3.1. a.out

ELF was not always the standard; original UNIX systems used a file format called a.out . We can

see the vestiges of this if you compile a program without the -o option to specify an output file

name; the executable will be created with a default name of a.out 1.

a.out is a very simple header format that only allows a single data, code and BSS section. As you

will come to see, this is insufficient for modern systems with dynamic libraries.

2.3.2. COFF

The Common Object File Format, or COFF, was the precursor to ELF. Its header format was more

flexible, allowing more (but limited) sections in the file.

COFF also has difficulties with elegant support of shared libraries, and ELF was selected as an alterna-

tive implementation on Linux.

However, COFF lives on in Microsoft Windows as the Portable Executable or PE format. PE is

to Windows as ELF is to Linux.

3. ELF

ELF is an extremely flexible format for representing binary code in a system. By following the ELF

standard you can represent a kernel binary just as easily as a normal executable or a system library.

The same tools can be used to inspect and operate on all ELF files and developers who understand the

ELF file format can translate their skills to most modern UNIX systems.

ELF extends on COFF and gives the header sufficient flexibility to define an arbitrary number of sec-

tions, each with its own properties. This facilitates easier dynamic linking and debugging.

1. In fact, a.out is the default output filename from the linker. The compiler generally uses randomly

generated file names as intermediate files for assembly and object code.

Computer Science from the Bottom Up

215

Header

Data

Header

Data

Header

Data

Header

Data

Header

Figure 8.1. ELF Overview

3.1. ELF File Header
Overall, the file has a file header which describes the file in general and then has pointers to each of

the individual sections that make up the file. Example 8.1, “The ELF Header” shows the description

as given in the API documentation for ELF32 (the 32-bit form of ELF). This is the layout of the C

structure which defines a ELF header.

1 typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

5 Elf32_Word e_version;

Computer Science from the Bottom Up

216

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

10 Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

15 Elf32_Half e_shstrndx;

} Elf32_Ehdr;

Example 8.1. The ELF Header

1 $ readelf --header /bin/ls

ELF Header:

Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00

5 Class: ELF32

Data: 2's complement, big endian

Version: 1 (current)

Computer Science from the Bottom Up

217

OS/ABI: UNIX - System V

ABI Version: 0

10 Type: EXEC (Executable file)

Machine: PowerPC

Version: 0x1

Entry point address: 0x10002640

Start of program headers: 52 (bytes into file)

15 Start of section headers: 87460 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 8

20 Size of section headers: 40 (bytes)

Number of section headers: 29

Section header string table index: 28

[...]

Example 8.2. The ELF Header, as shown by readelf

Example 8.2, “The ELF Header, as shown by readelf” shows a human readable form as present by the

readelf program, which is part of GNU binutils.

The e_ident array is the first thing at the start of any ELF file, and always starts with a few "magic"

Computer Science from the Bottom Up

218

bytes. The first byte is 0x7F and then the next three bytes are "ELF". You can inspect an ELF binary to

see this for yourself with something like the hexdump command.

ianw@mingus:~$ hexdump -C /bin/ls | more

00000000 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00 |.ELF............|

... (rest of the program follows) ...

Example 8.3. Inspecting the ELF magic number

Note the 0x7F to start, then the ASCII encoded "ELF" string. Have a look at the standard and see what

the rest of the array defines and what the values are in a binary.

Next we have some flags for the type of machine this binary is created for. The first thing we can see

is that ELF defines different type sized versions, one for 32 bit and one for 64 bit versions; here we in-

spect the 32 bit version. The difference is mostly that on 64 bit machines addresses obviously required

to be held in 64 bit variables. We can see that the binary has been created for a big endian machine that

uses 2's complement to represent negative numbers. Skipping down a bit we can see the Machine

tells us this is a PowerPC binary.

The apparently innocuous entry point address seems straight forward enough; this is the address in

memory that the program code starts at. Beginning C programmers are told that main() is the first pro-

gram called in your program. Using the entry point address we can actually verify that it isn't.

1 $ cat test.c

#include <stdio.h>

int main(void)

5 {

Computer Science from the Bottom Up

219

printf("main is : %p\n", &main);

return 0;

}

10 $ gcc -Wall -o test test.c

$./test

main is : 0x10000430

15 $ readelf --headers ./test | grep 'Entry point'

Entry point address: 0x100002b0

$ objdump --disassemble ./test | grep 100002b0

100002b0 <_start>:

20 100002b0: 7c 29 0b 78 mr r9,r1

Example 8.4. Investigating the entry point

In Example 8.4, “Investigating the entry point” we can see that the entry point is actually a function

called _start . Our program didn't define this at all, and the leading underscore suggests that it is in

a separate namespace. We examine how a program starts up in detail in Section 8.2, “Starting the pro-

gram”.

After that the header contains pointers to where in the file other important parts of the ELF file start,

like a table of contents.

Computer Science from the Bottom Up

220

3.2. Symbols and Relocations
The ELF specification provides for symbol tables which are simply mappings of strings (symbols) to

locations in the file. Symbols are required for linking; for example assigning a value to a variable

foo declared as extern int foo; would require the linker to find the address of foo , which

would involve looking up "foo" in the symbol table and finding the address.

Closely related to symbols are relocations. A relocation is simply a blank space left to be patched up

later. In the previous example, until the address of foo is known it can not be used. However, on a

32-bit system, we know the address of foo must be a 4-byte value, so any time the compiler needs to

use that address (to say, assign a value) it can simply leave 4-bytes of blank space and keep a reloca-

tion that essentially says to the linker "place the real value of "foo" into the 4 bytes at this address". As

mentioned, this requires the symbol "foo" to be resolved. Section 2.1, “Relocations” contains further

information on relocations.

3.3. Sections and Segments
The ELF format specifies two "views" of an ELF file — that which is used for linking and that which

is used for execution. This affords significant flexibility for systems designers.

We talk about sections in object code waiting to be linked into an executable. One or more sections

map to a segment in the executable.

3.3.1. Segments

As we have done before, it is sometimes easier to look at the higher level of abstraction (segments) be-

fore inspecting the lower layers.

As we mentioned the ELF file has an header that describes the overall layout of the file. The ELF

header actually points to another group of headers called the program headers. These headers describe

to the operating system anything that might be required for it to load the binary into memory and exe-

cute it. Segments are described by program headers, but so are some other things required to get the

executable running.

1 typedef struct {

Computer Science from the Bottom Up

221

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

5 Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

10 }

Example 8.5. The Program Header

The definition of the program header is seen in Example 8.5, “The Program Header”. You might have

noticed from the ELF header definition above how there were fields e_phoff , e_phnum and

e_phentsize ; these are simply the offset in the file where the program headers start, how many pro-

gram headers there are and how big each program header is. With these three bits of information you

can easily find and read the program headers.

Program headers more than just segments. The p_type field defines just what the program header is

defining. For example, if this field is PT_INTERP the header is defined as meaning a string pointer to

an interpreter for the binary file. We discussed compiled versus interpreted languages previously and

made the distinction that a compiler builds a binary which can be run in a stand alone fashion. Why

should it need an interpreter? As always, the true picture is a little more complicated. There are several

reasons why a modern system wants flexibility when loading executable files, and to do this some in-

formation can only be adequately acquired at the actual time the program is set up to run. We see this

in future chapters where we look into dynamic linking. Consequently some minor changes might need

to be made to the binary to allow it to work properly at runtime. Thus the usual interpreter of a binary

file is the dynamic loader, so called because it takes the final steps to complete loading of the exe-

cutable and prepare the binary image for running.

Computer Science from the Bottom Up

222

Segments are described with a value of PT_LOAD in the p_type field. Each segment is then de-

scribed by the other fields in the program header. The p_offset field tells you how far into the file

on disk the data for the segment is. The p_vaddr field tells you what address that data is to live at in

virtual memory (p_addr describes the physical address, which is only really useful for small embed-

ded systems that do not implement virtual memory). The two flags p_filesz and p_memsz work to

tell you how big the segment is on disk and how big it should be in memory. If the memory size is

greater than the disk size, then the overlap should be filled with zeros. In this way you can save con-

siderable space in your binaries by not having to waste space for empty global variables. Finally

p_flags indicates the permissions on the segment. Execute, read and write permissions can be spec-

ified in any combination; for example code segments should be marked as read and execute only, data

sections as read and write with no execute.

There are a few other segment types defined in the program headers, they are described more fully in

the standards specification.

3.3.2. Sections

As we have mentioned, sections make up segments. Sections are a way to organise the binary into log-

ical areas to communicate information between the compiler and the linker. In some special binaries,

such as the Linux kernel, sections are used in more specific ways (see Section 6.2, “Custom sec-

tions”).

We've seen how segments ultimately come down to a blob of data in a file on disk with some descrip-

tions about where it should be loaded and what permissions it has. Sections have a similar header to

segments, as shown in Example 8.6, “Sections ”.

1 typedef struct {

Elf32_Word sh_name;

Elf32_Word sh_type;

Elf32_Word sh_flags;

5 Elf32_Addr sh_addr;

Computer Science from the Bottom Up

223

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

Elf32_Word sh_info;

10 Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

}

Example 8.6. Sections

Sections have a few more types defined for the sh_type field; for example a section of type

SH_PROGBITS is defined as a section that hold binary data for use by the program. Other flags say if

this section is a symbol table (used by the linker or debugger for example) or maybe something for the

dynamic loader. There are also more attributes, such as the allocate attribute which flags that this sec-

tion will need memory allocated for it.

Below we will examine the program listed in Example 8.7, “Sections ”.

1 #include <stdio.h>

int big_big_array[10*1024*1024];

5 char *a_string = "Hello, World!";

int a_var_with_value = 0x100;

Computer Science from the Bottom Up

224

int main(void)

10 {

big_big_array[0] = 100;

printf("%s\n", a_string);

a_var_with_value += 20;

}

Example 8.7. Sections

Example 8.8, “Sections readelf output ” shows the output of readelf with some parts stripped clarity.

Using this output we can analyse each part of our simple program and see where it ends up in the final

output binary.

1 $ readelf --all ./sections

ELF Header:

...

Size of section headers: 40 (bytes)

5 Number of section headers: 37

Section header string table index: 34

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

Computer Science from the Bottom Up

225

10 [0] NULL 00000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 10000114 000114 00000d 00 A 0 0 1

[2] .note.ABI-tag NOTE 10000124 000124 000020 00 A 0 0 4

[3] .hash HASH 10000144 000144 00002c 04 A 4 0 4

[4] .dynsym DYNSYM 10000170 000170 000060 10 A 5 1 4

15 [5] .dynstr STRTAB 100001d0 0001d0 00005e 00 A 0 0 1

[6] .gnu.version VERSYM 1000022e 00022e 00000c 02 A 4 0 2

[7] .gnu.version_r VERNEED 1000023c 00023c 000020 00 A 5 1 4

[8] .rela.dyn RELA 1000025c 00025c 00000c 0c A 4 0 4

[9] .rela.plt RELA 10000268 000268 000018 0c A 4 25 4

20 [10] .init PROGBITS 10000280 000280 000028 00 AX 0 0 4

[11] .text PROGBITS 100002b0 0002b0 000560 00 AX 0 0 16

[12] .fini PROGBITS 10000810 000810 000020 00 AX 0 0 4

[13] .rodata PROGBITS 10000830 000830 000024 00 A 0 0 4

[14] .sdata2 PROGBITS 10000854 000854 000000 00 A 0 0 4

25 [15] .eh_frame PROGBITS 10000854 000854 000004 00 A 0 0 4

[16] .ctors PROGBITS 10010858 000858 000008 00 WA 0 0 4

[17] .dtors PROGBITS 10010860 000860 000008 00 WA 0 0 4

[18] .jcr PROGBITS 10010868 000868 000004 00 WA 0 0 4

[19] .got2 PROGBITS 1001086c 00086c 000010 00 WA 0 0 1

Computer Science from the Bottom Up

226

30 [20] .dynamic DYNAMIC 1001087c 00087c 0000c8 08 WA 5 0 4

[21] .data PROGBITS 10010944 000944 000008 00 WA 0 0 4

[22] .got PROGBITS 1001094c 00094c 000014 04 WAX 0 0 4

[23] .sdata PROGBITS 10010960 000960 000008 00 WA 0 0 4

[24] .sbss NOBITS 10010968 000968 000000 00 WA 0 0 1

35 [25] .plt NOBITS 10010968 000968 000060 00 WAX 0 0 4

[26] .bss NOBITS 100109c8 000968 2800004 00 WA 0 0 4

[27] .comment PROGBITS 00000000 000968 00018f 00 0 0 1

[28] .debug_aranges PROGBITS 00000000 000af8 000078 00 0 0 8

[29] .debug_pubnames PROGBITS 00000000 000b70 000025 00 0 0 1

40 [30] .debug_info PROGBITS 00000000 000b95 0002e5 00 0 0 1

[31] .debug_abbrev PROGBITS 00000000 000e7a 000076 00 0 0 1

[32] .debug_line PROGBITS 00000000 000ef0 0001de 00 0 0 1

[33] .debug_str PROGBITS 00000000 0010ce 0000f0 01 MS 0 0 1

[34] .shstrtab STRTAB 00000000 0011be 00013b 00 0 0 1

45 [35] .symtab SYMTAB 00000000 0018c4 000c90 10 36 65 4

[36] .strtab STRTAB 00000000 002554 000909 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)

Computer Science from the Bottom Up

227

50 O (extra OS processing required) o (OS specific), p (processor specific)

There are no section groups in this file.

...

55 Symbol table '.symtab' contains 201 entries:

Num: Value Size Type Bind Vis Ndx Name

...

99: 100109cc 0x2800000 OBJECT GLOBAL DEFAULT 26 big_big_array

...

60 110: 10010960 4 OBJECT GLOBAL DEFAULT 23 a_string

...

130: 10010964 4 OBJECT GLOBAL DEFAULT 23 a_var_with_value

...

144: 10000430 96 FUNC GLOBAL DEFAULT 11 main

Example 8.8. Sections readelf output

Firstly, let us look at the variable big_big_array , which as the name suggests is a fairly large global

array. If we skip down to the symbol table we can see that the variable is at location 0x100109cc

which we can correlate to the .bss section in the section listing, since it starts just below it at

0x100109c8 . Note the size, and how it is quite large. We mentioned that BSS is a standard part of a

binary image since it would be silly to require that binary on disk have 10 megabytes of space allocat-

ed to it, when all of that space is going to be zero. Note that this section has a type of NOBITS mean-

ing that it does not have any bytes on disk.

Computer Science from the Bottom Up

228

Thus the .bss section is defined for global variables whose value should be zero when the program

starts. We have seen how the memory size can be different to the on disk size in our discussion of seg-

ments; variables being in the .bss section are an indication that they will be given zero value on pro-

gram start.

The a_string variable lives in the .sdata section, which stands for small data. Small data (and

the corresponding .sbss section) are sections available on some architectures where data can be

reached by an offset from some known pointer. This means a fixed-value can be added to the base-ad-

dress, making it faster to get to data in the sections as there are no extra lookups and loading of ad-

dresses into memory required. Most architectures are limited to the size of immediate values you can

add to a register (e.g. if performing the instruction r1 = add r2, 70; , 70 is an immediate value, as

opposed to say, adding two values stored in registers r1 = add r2,r3) and can thus only offset a

certain "small" distance from an address. We can also see that our a_var_with_value lives in the

same place.

main however lives in the .text section, as we expect (remember the name "text" and "code" are

used interchangeably to refer to a program in memory.

3.3.3. Sections and Segments together

1 $ readelf --segments /bin/ls

Elf file type is EXEC (Executable file)

Entry point 0x100026c0

5 There are 8 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x10000034 0x10000034 0x00100 0x00100 R E 0x4

Computer Science from the Bottom Up

229

10 INTERP 0x000154 0x10000154 0x10000154 0x0000d 0x0000d R 0x1

[Requesting program interpreter: /lib/ld.so.1]

LOAD 0x000000 0x10000000 0x10000000 0x14d5c 0x14d5c R E 0x10000

LOAD 0x014d60 0x10024d60 0x10024d60 0x002b0 0x00b7c RWE 0x10000

DYNAMIC 0x014f00 0x10024f00 0x10024f00 0x000d8 0x000d8 RW 0x4

15 NOTE 0x000164 0x10000164 0x10000164 0x00020 0x00020 R 0x4

GNU_EH_FRAME 0x014d30 0x10014d30 0x10014d30 0x0002c 0x0002c R 0x4

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

Section to Segment mapping:

20 Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_ r .rela.dyn .rela.plt .init .text .fini .rodata .eh_frame_hdr

03 .data .eh_frame .got2 .dynamic .ctors .dtors .jcr .got .sdata .sbss .p lt .bss

25 04 .dynamic

05 .note.ABI-tag

06 .eh_frame_hdr

Computer Science from the Bottom Up

230

07

Example 8.9. Sections and Segments

Example 8.9, “Sections and Segments” shows how readelf shows us the segments and section

mappings in the ELF file for the binary /bin/ls .

Skipping to the bottom of the output, we can see what sections have been moved into what segments.

So, for example the .interp section is placed into an INTERP flagged segment. Notice that readelf

tells us it is requesting the interpreter /lib/ld.so.1 ; this is the dynamic linker which is run to pre-

pare the binary for execution.

Looking at the two LOAD segments we can see the distinction between text and data. Notice how the

first one has only "read" and "execute" permissions, whilst the next one has read, write and execute

permissions? These describe the code (r/w) and data (r/w/e) segments.

But data should not need to be executable! Indeed, on most architectures (for example, the most com-

mon x86) the data section will not be marked as having the data section executable. However, the ex-

ample output above was taken from a PowerPC machine which has a slightly different programming

model (ABI, see below) requiring that the data section be executable 1. Such is the life of a systems

programmer, where rules were made to be broken!

The other interesting thing to note is that the file size is the same as the memory size for the code seg-

ment, however memory size is greater than the file size for the data segment. This comes from the

BSS section which holds zeroed global variables.

4. ELF Executables

Executables are of course one of the primary uses of the ELF format. Contained within the binary is

everything required for the operating system to execute the code as intended.

Since an executable is designed to be run in a process with a unique address space (see Chapter 6, Vir-

tual Memory) the code can make assumptions about where the various parts of the program will be

1. For those that are curious, the PowerPC ABI calls stubs for functions in dynamic libraries directly in

the GOT, rather than having them bounce through a separate PLT entry. Thus the processor needs ex-

ecute permissions for the GOT section, which you can see is embedded in the data segment. This

should make sense after reading the dynamic linking chapter!

Computer Science from the Bottom Up

231

loaded in memory. Example 8.10, “Segments of an executable file” shows an example using the read-

elf tool to examine the segments of an executable file. We can see the virtual addresses at which the

LOAD segments are required to be placed at. We can further see that one segment is for code — it has

read and execute permissions only — and one is for data, unsurprisingly with read and write permis-

sions, but importantly no execute permissions (without execute permissions, even if a bug allowed an

attacker to introduce arbitrary data the pages backing it would not be marked with execute permis-

sions, and most processors will hence disallow any execution of code in those pages).

1 $ readelf --segments /bin/ls

Elf file type is EXEC (Executable file)

Entry point 0x4046d4

5 There are 8 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

10 PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x00000000000001c0 0x00000000000001c0 R E 8

INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200

0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

15 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

Computer Science from the Bottom Up

232

0x0000000000019ef4 0x0000000000019ef4 R E 200000

LOAD 0x000000000001a000 0x000000000061a000 0x000000000061a000

0x000000000000077c 0x0000000000001500 RW 200000

DYNAMIC 0x000000000001a028 0x000000000061a028 0x000000000061a028

20 0x00000000000001d0 0x00000000000001d0 RW 8

NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c

0x0000000000000044 0x0000000000000044 R 4

GNU_EH_FRAME 0x0000000000017768 0x0000000000417768 0x0000000000417768

0x00000000000006fc 0x00000000000006fc R 4

25 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 8

Section to Segment mapping:

Segment Sections...

30 00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .hash .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame

03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

35 05 .note.ABI-tag .note.gnu.build-id

Computer Science from the Bottom Up

233

06 .eh_frame_hdr

07

Example 8.10. Segments of an executable file

The program segments must be loaded at these addresses; the last step of the linker is to resolve most

relocations (Section 3.2, “Symbols and Relocations”) and patch them with the assumed absolute ad-

dresses — the data describing the relocation is then discarded in the final binary and there is no longer

a way to find this information.

In reality, executables generally have external dependencies on shared libraries, or pieces of common

code abstracted and shared among the entire system — almost all of the confusing parts of Exam-

ple 8.10, “Segments of an executable file” relate to the use of shared libraries. Libraries are discussed

in Section 5, “Libraries”, dynamic libraries in Chapter 9, Dynamic Linking.

5. Libraries

Developers soon tired of having to write everything from scratch, so one of the first inventions of

computer science was libraries.

A library is simply a collection of functions which you can call from your program. Obviously a li-

brary has many advantages, not least of which is that you can save much time by reusing work some-

one else has already done and generally be more confident that it has fewer bugs (since probably many

other people use the libraries too, and you benefit from having them finding and fixing bugs). A li-

brary is exactly like an executable, except instead of running directly the library functions are invoked

with parameters from your executable.

5.1. Static Libraries
The most straight forward way of using a library function is to have the object files from the library

linked directly into your final executable, just as with those you have compiled yourself. When linked

like this the library is called a static library, because the library will remain unchanged unless the pro-

gram is recompiled.

This is the most straight forward way of using a library as the final result is a simple executable with

no dependencies.

Computer Science from the Bottom Up

234

5.1.1. Inside static libraries

A static library is simply a group of object files. The object files are kept in an archive, which leads to

their usual .a suffix extension. You can think of archives as similar to a zip file, but without com-

pression.

Below we show the creation of basic static library and introduce some common tools for working with

libraries.

1 $ cat library.c

/* Library Function */

int function(int input)

{

5 return input + 10;

}

$ cat library.h

/* Function Definition */

10 int function(int);

$ cat program.c

#include <stdio.h>

/* Library header file */

15 #include "library.h"

Computer Science from the Bottom Up

235

int main(void)

{

int d = function(100);

20

printf("%d\n", d);

}

$ gcc -c library.c

25 $ ar rc libtest.a library.o

$ ranlib ./libtest.a

$ nm --print-armap ./libtest.a

Archive index:

30 function in library.o

library.o:

00000000 T function

35 $ gcc -L . program.c -ltest -o program

Computer Science from the Bottom Up

236

$./program

110

Example 8.11. Creating and using a static library

Firstly we compile our library to an object file, just as we have seen in the previous chapter.

Notice that we define the library API in the header file. The API consists of function definitions for

the functions in the library; this is so that the compiler knows what types the functions take when

building object files that reference the library (e.g. program.c , which #include s the header file).

We create the library ar (short for "archive") command. By convention static library file names are

prefixed with lib and have the extension .a . The c argument tells the program to create the

archive, and a tells archive to add the object files specified into the library file.1

Next we use the ranlib application to make a header in the library with the symbols of the object file

contents. This helps the compiler to quickly reference symbols; in the case where we just have one this

step may seem a little redundant; however a large library may have thousands of symbols meaning an

index can significantly speed up finding references. We inspect this new header with the nm applica-

tion. We see the function symbol for the function() function at offset zero, as we expect.

You then specify the library to the compiler with -lname where name is the filename of the library

without the prefix lib . We also provide an extra search directory for libraries, namely the current di-

rectory (-L .), since by default the current directory is not searched for libraries.

The final result is a single executable with our new library included.

1. Archives created with ar pop up in a few different places around Linux systems other than just creat-

ing static libraries. One widely used application is in the .deb packaging format used with Debian,

Ubuntu and some other Linux systems is one example. debs use archives to keep all the applica-

tion files together in the one package file. RedHat RPM packages use an alternate but similar format

called cpio. Of course the canonical application for keeping files together is the tar file, which is a

common format to distribute source code.

Computer Science from the Bottom Up

237

5.1.2. Static Linking Drawbacks

Static linking is very straight forward, but has a number of drawbacks.

There are two main disadvantages; firstly if the library code is updated (to fix a bug, say) you have to

recompile your program into a new executable and secondly, every program in the system that uses

that library contains a copy in its executable. This is very inefficient (and a pain if you find a bug and

have to recompile, as per point one).

For example, the C library (glibc) is included in all programs, and provides all the common functions

such as printf .

5.2. Shared Libraries
Shared libraries are an elegant way around the problems posed by a static library. A shared library is a

library that is loaded dynamically at runtime for each application that requires it.

The application simply leaves pointers that it will require a certain library, and when the function call

is made the library is loaded into memory and executed. If the library is already loaded for another ap-

plication, the code can be shared between the two, saving considerable resources with commonly used

libraries.

This process, called dynamic linking, is one of the more intricate parts of a modern operating system.

As such, we dedicate the next chapter to investigating the dynamic linking process.

6. Extending ELF concepts

6.1. Debugging
Traditionally the primary method of post mortem debugging is referred to as the core dump. The term

core comes from the original physical characteristics of magnetic core memory, which uses the orien-

tation of small magnetic rings to store state.

Thus a core dump is simply a complete snapshot of the program as it was running at a particular time.

A debugger can then be used to examine this dump and reconstruct the program state. Example 8.12,

“Example of creating a core dump and using it with gdb” shows a sample program that writes to a

random memory location in order to force a crash. At this point the processes will be halted and a

dump of the current state is recorded.

Computer Science from the Bottom Up

238

1 $ cat coredump.c

int main(void) {

char *foo = (char*)0x12345;

*foo = 'a';

5

return 0;

}

$ gcc -Wall -g -o coredump coredump.c

10

$./coredump

Segmentation fault (core dumped)

$ file ./core

15 ./core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from './coredump'

$ gdb ./coredump

...

(gdb) core core

Computer Science from the Bottom Up

239

20 [New LWP 31614]

Core was generated by `./coredump'.

Program terminated with signal 11, Segmentation fault.

#0 0x080483c4 in main () at coredump.c:3

3 *foo = 'a';

25 (gdb)

Example 8.12. Example of creating a core dump and using it with gdb

Thus a core-dump is just another ELF file with a range of sections understood to the debugger to rep-

resent parts of the running program.

6.1.1. Symbols and Debugging Information

As Example 8.12, “Example of creating a core dump and using it with gdb” shows, the debugger gdb

requires the original executable and the core dump to reconstruct the environment for the debugging

session. Note that the original executable was built with the -g flag, which instructs the compiler to

include all debugging information. This extra debugging information is kept in special sections of the

ELF file. It describes in detail things like what register values currently hold which variables used in

the code, size of variables, length of arrays, etc. It is generally in the standard DWARF format (a pun

on the almost-synonym ELF).

Including debugging information can make executable files and libraries very large; although this data

is not required resident in memory for actually running it can still take up considerable disk space.

Thus the usual process is to strip this information from the ELF file. While it is possible to arrange for

shipping of both stripped and unstripped files, most all current binary distribution methods provide the

debugging information in separate files. The objcopy tool can be used to extract the debugging infor-

mation (--only-keep-debug) and then add a link in the original executable to this stripped informa-

tion (--add-gnu-debuglink). After this is done, a special section called .gnu_debuglink will be

present in the original executable, which contains a hash so that when a debugging sessions starts the

debugger can be sure it associates the right debugging information with the right executable.

Computer Science from the Bottom Up

240

1 $ gcc -g -shared -o libtest.so libtest.c

$ objcopy --only-keep-debug libtest.so libtest.debug

$ objcopy --add-gnu-debuglink=libtest.debug libtest.so

$ objdump -s -j .gnu_debuglink libtest.so

5

libtest.so: file format elf32-i386

Contents of section .gnu_debuglink:

0000 6c696274 6573742e 64656275 67000000 libtest.debug...

10 0010 52a7fd0a R...

Example 8.13. Example of stripping debugging information into separate files using

objcopy

Symbols take up much less space, but are also targets for removal from final output. Once the individ-

ual object files of an executable are linked into the single final image there is generally no need for

most symbols to remain. As discussed in Section 3.2, “Symbols and Relocations” symbols are re-

quired to fix up relocation entries, but once this is done the symbols are not strictly necessary for run-

ning the final program. On Linux the GNU toolchain strip program provides options to remove sym-

bols. Note that some symbols are required to be resolved at run-time (for dynamic linking, the focus of

Chapter 9, Dynamic Linking) but these are put in separate dynamic symbol tables so they will not be

removed and render the final output useless.

6.1.2. Inside coredumps

A coredump is really just another ELF file; this illustrates the flexibility of ELF as a binary format.

Computer Science from the Bottom Up

241

1 $ readelf --all ./core

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

5 Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: CORE (Core file)

10 Machine: Intel 80386

Version: 0x1

Entry point address: 0x0

Start of program headers: 52 (bytes into file)

Start of section headers: 0 (bytes into file)

15 Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 15

Size of section headers: 0 (bytes)

Computer Science from the Bottom Up

242

20 Number of section headers: 0

Section header string table index: 0

There are no sections in this file.

25 There are no sections to group in this file.

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NOTE 0x000214 0x00000000 0x00000000 0x0022c 0x00000 0

30 LOAD 0x001000 0x08048000 0x00000000 0x01000 0x01000 R E 0x1000

LOAD 0x002000 0x08049000 0x00000000 0x01000 0x01000 RW 0x1000

LOAD 0x003000 0x489fc000 0x00000000 0x01000 0x1b000 R E 0x1000

LOAD 0x004000 0x48a17000 0x00000000 0x01000 0x01000 R 0x1000

LOAD 0x005000 0x48a18000 0x00000000 0x01000 0x01000 RW 0x1000

35 LOAD 0x006000 0x48a1f000 0x00000000 0x01000 0x153000 R E 0x1000

LOAD 0x007000 0x48b72000 0x00000000 0x00000 0x01000 0x1000

LOAD 0x007000 0x48b73000 0x00000000 0x02000 0x02000 R 0x1000

LOAD 0x009000 0x48b75000 0x00000000 0x01000 0x01000 RW 0x1000

LOAD 0x00a000 0x48b76000 0x00000000 0x03000 0x03000 RW 0x1000

Computer Science from the Bottom Up

243

40 LOAD 0x00d000 0xb771c000 0x00000000 0x01000 0x01000 RW 0x1000

LOAD 0x00e000 0xb774d000 0x00000000 0x02000 0x02000 RW 0x1000

LOAD 0x010000 0xb774f000 0x00000000 0x01000 0x01000 R E 0x1000

LOAD 0x011000 0xbfeac000 0x00000000 0x22000 0x22000 RW 0x1000

45 There is no dynamic section in this file.

There are no relocations in this file.

There are no unwind sections in this file.

50

No version information found in this file.

Notes at offset 0x00000214 with length 0x0000022c:

Owner Data size Description

55 CORE 0x00000090 NT_PRSTATUS (prstatus structure)

CORE 0x0000007c NT_PRPSINFO (prpsinfo structure)

CORE 0x000000a0 NT_AUXV (auxiliary vector)

LINUX 0x00000030 Unknown note type: (0x00000200)

Computer Science from the Bottom Up

244

60 $ eu-readelf -n ./core

Note segment of 556 bytes at offset 0x214:

Owner Data size Type

CORE 144 PRSTATUS

65 info.si_signo: 11, info.si_code: 0, info.si_errno: 0, cursig: 11

sigpend: <>

sighold: <>

pid: 31614, ppid: 31544, pgrp: 31614, sid: 31544

utime: 0.000000, stime: 0.000000, cutime: 0.000000, cstime: 0.000000

70 orig_eax: -1, fpvalid: 0

ebx: 1219973108 ecx: 1243440144 edx: 1

esi: 0 edi: 0 ebp: 0xbfecb828

eax: 74565 eip: 0x080483c4 eflags: 0x00010286

esp: 0xbfecb818

75 ds: 0x007b es: 0x007b fs: 0x0000 gs: 0x0033 cs: 0x0073 ss: 0x007b

CORE 124 PRPSINFO

state: 0, sname: R, zomb: 0, nice: 0, flag: 0x00400400

uid: 1000, gid: 1000, pid: 31614, ppid: 31544, pgrp: 31614, sid: 31544

fname: coredump, psargs: ./coredump

Computer Science from the Bottom Up

245

80 CORE 160 AUXV

SYSINFO: 0xb774f414

SYSINFO_EHDR: 0xb774f000

HWCAP: 0xafe8fbff <fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov clflush dts acpi mmx fxsr sse sse2 ss tm pbe>

PAGESZ: 4096

85 CLKTCK: 100

PHDR: 0x8048034

PHENT: 32

PHNUM: 8

BASE: 0

90 FLAGS: 0

ENTRY: 0x8048300

UID: 1000

EUID: 1000

GID: 1000

95 EGID: 1000

SECURE: 0

RANDOM: 0xbfecba1b

EXECFN: 0xbfecdff1

PLATFORM: 0xbfecba2b

Computer Science from the Bottom Up

246

100 NULL

LINUX 48 386_TLS

index: 6, base: 0xb771c8d0, limit: 0x000fffff, flags: 0x00000051

index: 7, base: 0x00000000, limit: 0x00000000, flags: 0x00000028

index: 8, base: 0x00000000, limit: 0x00000000, flags: 0x00000028

Example 8.14. Example of using readelf and eu-readelf to examine a coredump.

In Example 8.14, “Example of using readelf and eu-readelf to examine a coredump.” we can see an

examination of the core file produced by Example 8.12, “Example of creating a core dump and using

it with gdb” using firstly the readelf tool. There are no sections, relocations or other extraneous infor-

mation in the file that may be required for loading an executable or library; it simply consists of a se-

ries of program headers describing LOAD segments. These segments are raw data dumps, created by

the kernel, of the current memory allocations.

The other component of the core dump is the NOTE sections which contain data necessary for debug-

ging but not necessarily captured in straight snapshot of the memory allocations. The eu-readelf pro-

gram used in the second part of the figure provides a more complete view of the data by decoding it.

The PRSTATUS note gives a range of interesting information about the process as it was running; for

example we can see from cursig that the program received a signal 11, or segmentation fault, as we

would expect. Along with process number information, it also includes a dump of all the current regis-

ters. Given the register values, the debugger can reconstruct the stack state and hence provide a back-

trace; combined with the symbol and debugging information from the original binary the debugger

can show exactly how you reached the current point of execution.

Another interesting output is the current auxiliary vector (AUXV), discussed in Section 8.1, “Kernel

communication to programs”. The 386_TLS describes global descriptor table entries used for the

x86 implementation of thread-local storage (see Section 4.1.1.3, “Fast System Calls” for more infor-

mation on use of segmentation, and Section 4.3.1.1, “Threads” for information on threads1).

1. For a multi-threaded application, there would be duplicate entries for each thread running. The de-

bugger will understand this, and it is how gdb implements the thread command to show and

switch between threads.

Computer Science from the Bottom Up

247

The kernel creates the core dump file within the bounds of the current ulimit settings — since a

program using a lot of memory could result in a very large dump, potentially filling up disk and mak-

ing problems even worse, generally the ulimit is set low or even at zero, since most non-developers

have little use for a core dump file. However the core dump remains the single most useful way to de-

bug an unexpected situation in a postmortem fashion.

6.2. Custom sections
For the most part, organisation of code, data and symbols is something a programmer can leave up the

toolchain defaults. However, there are times when it makes sense to extend or customise sections and

their contents. One common example of this is with Linux kernel modules which are used to dynami-

cally load drivers and other features into the running kernel. Because these modules are not portable,

in so much as they only work with one fixed kernel build version, the interface between modules and

the kernel can be flexible and is not bound to particular standards. This means the methods of storing

things like license information, authorship, dependencies and paramaters for the moudule can be

uniquely and wholly defined by the kernel.

The modinfo tool can inspect this information within a module and present it to the user. Below we

use the example of the FUSE Linux kernel module, which allows user-space libraries to provide file-

system implementations to the kernel.

1 $ cd /lib/modules/$(uname -r)

$ sudo modinfo ./kernel/fs/fuse/fuse.ko

filename: /lib/modules/3.2.0-4-amd64/./kernel/fs/fuse/fuse.ko

5 alias: devname:fuse

alias: char-major-10-229

license: GPL

description: Filesystem in Userspace

Computer Science from the Bottom Up

248

author: Miklos Szeredi <miklos@szeredi.hu>

10 depends:

intree: Y

vermagic: 3.2.0-4-amd64 SMP mod_unload modversions

parm: max_user_bgreq:Global limit for the maximum number of backgrounded requests an unprivileged user can set (uint)

parm: max_user_congthresh:Global limit for the maximum congestion threshold an unprivileged user can set (uint)

15

$ objdump -s -j .modinfo ./kernel/fs/fuse/fuse.ko

./kernel/fs/fuse/fuse.ko: file format elf64-x86-64

20 Contents of section .modinfo:

0000 616c6961 733d6465 766e616d 653a6675 alias=devname:fu

0010 73650061 6c696173 3d636861 722d6d61 se.alias=char-ma

0020 6a6f722d 31302d32 32390070 61726d3d jor-10-229.parm=

0030 6d61785f 75736572 5f636f6e 67746872 max_user_congthr

25 0040 6573683a 476c6f62 616c206c 696d6974 esh:Global limit

0050 20666f72 20746865 206d6178 696d756d for the maximum

0060 20636f6e 67657374 696f6e20 74687265 congestion thre

0070 73686f6c 6420616e 20756e70 72697669 shold an unprivi

Computer Science from the Bottom Up

249

0080 6c656765 64207573 65722063 616e2073 leged user can s

30 0090 65740070 61726d74 7970653d 6d61785f et.parmtype=max_

00a0 75736572 5f636f6e 67746872 6573683a user_congthresh:

00b0 75696e74 00706172 6d3d6d61 785f7573 uint.parm=max_us

00c0 65725f62 67726571 3a476c6f 62616c20 er_bgreq:Global

00d0 6c696d69 7420666f 72207468 65206d61 limit for the ma

35 00e0 78696d75 6d206e75 6d626572 206f6620 ximum number of

00f0 6261636b 67726f75 6e646564 20726571 backgrounded req

0100 75657374 7320616e 20756e70 72697669 uests an unprivi

0110 6c656765 64207573 65722063 616e2073 leged user can s

0120 65740070 61726d74 7970653d 6d61785f et.parmtype=max_

40 0130 75736572 5f626772 65713a75 696e7400 user_bgreq:uint.

0140 6c696365 6e73653d 47504c00 64657363 license=GPL.desc

0150 72697074 696f6e3d 46696c65 73797374 ription=Filesyst

0160 656d2069 6e205573 65727370 61636500 em in Userspace.

0170 61757468 6f723d4d 696b6c6f 7320537a author=Miklos Sz

45 0180 65726564 69203c6d 696b6c6f 7340737a eredi <miklos@sz

0190 65726564 692e6875 3e000000 00000000 eredi.hu>.......

01a0 64657065 6e64733d 00696e74 7265653d depends=.intree=

01b0 59007665 726d6167 69633d33 2e322e30 Y.vermagic=3.2.0

Computer Science from the Bottom Up

250

01c0 2d342d61 6d643634 20534d50 206d6f64 -4-amd64 SMP mod

50 01d0 5f756e6c 6f616420 6d6f6476 65727369 _unload modversi

01e0 6f6e7320 00 ons .

Example 8.15. Example of modinfo output

As you can see above, modinfo is parsing the .modinfo section embedded within the module file

to present the details of the module. Example 8.16, “Putting module info into sections” shows how

one field, the "author" is put into the module. The code mostly comes from include/linux/mod-

ule.h .

1 /*

* Start at the bottom, and work your way up!

*/

5 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */

#define ___PASTE(a,b) a##b

#define __PASTE(a,b) ___PASTE(a,b)

10 #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)

/* Indirect stringification. Doing two levels allows the parameter to be a

* macro itself. For example, compile with -DFOO=bar, __stringify(FOO)

Computer Science from the Bottom Up

251

* converts to "bar".

15 */

#define __stringify_1(x...) #x

#define __stringify(x...) __stringify_1(x)

20 #define __MODULE_INFO(tag, name, info) \

static const char __UNIQUE_ID(name)[] \

__used __attribute__((section(".modinfo"), unused, aligned(1))) \

= __stringify(tag) "=" info

25 /* Generic info of form tag = "info" */

#define MODULE_INFO(tag, info) __MODULE_INFO(tag, tag, info)

/*

* Author(s), use "Name <email>" or just "Name", for multiple

30 * authors use multiple MODULE_AUTHOR() statements/lines.

*/

#define MODULE_AUTHOR(_author) MODULE_INFO(author, _author)

Computer Science from the Bottom Up

252

/* ---- */

35

MODULE_AUTHOR("Your Name <your@name.com>");

Example 8.16. Putting module info into sections

At first, this looks like a macro nightmare, but it can be unravelled step by step. Starting at the bottom,

we see that MODULE_AUTHOR is a wrapper around the more generic __MODULE_INFO macro, which

is where most of the magic happens. There, we can see that we are building up a static const

char [] variable to hold the string "author=Your Name <your@name.com>" . The interesting

thing to note is that the variable has an extra parameter __attribute__((section(".modinfo")))

which is telling the compiler to not put this in the data section with all the other variables, but to

stash it in its own ELF section called .modinfo . The other parameters stop the variable being opti-

mised away because it looks unused and to ensure we pack the variables in next to each other by spec-

ifying the alignment.

There is extensive use of stringification macros, which are rather arcane tricks used within the C pre-

processor to ensure that strings and definitions can live together. The only other trick is the use of the

__COUNTER__ special define provided by gcc , which provides a unique, incrementing value each

time it is called; this allows multiple MODULE_AUTHOR calls to in the one file and not end up with the

same variable name.

We can inspect the symbols placed in the final module to see the end result:

1 $ objdump --syms ./fuse.ko | grep modinfo

0000000000000000 l d .modinfo 0000000000000000 .modinfo

0000000000000000 l O .modinfo 0000000000000013 __UNIQUE_ID_alias1

5 0000000000000013 l O .modinfo 0000000000000018 __UNIQUE_ID_alias0

Computer Science from the Bottom Up

253

000000000000002b l O .modinfo 0000000000000011 __UNIQUE_ID_alias8

000000000000003c l O .modinfo 000000000000000e __UNIQUE_ID_alias7

000000000000004a l O .modinfo 0000000000000068 __UNIQUE_ID_max_user_congthresh6

00000000000000b2 l O .modinfo 0000000000000022 __UNIQUE_ID_max_user_congthreshtype5

10 00000000000000d4 l O .modinfo 000000000000006e __UNIQUE_ID_max_user_bgreq4

0000000000000142 l O .modinfo 000000000000001d __UNIQUE_ID_max_user_bgreqtype3

000000000000015f l O .modinfo 000000000000000c __UNIQUE_ID_license2

000000000000016b l O .modinfo 0000000000000024 __UNIQUE_ID_description1

000000000000018f l O .modinfo 000000000000002a __UNIQUE_ID_author0

15 00000000000001b9 l O .modinfo 0000000000000011 __UNIQUE_ID_alias0

00000000000001d0 l O .modinfo 0000000000000009 __module_depends

00000000000001d9 l O .modinfo 0000000000000009 __UNIQUE_ID_intree1

00000000000001e2 l O .modinfo 000000000000002f __UNIQUE_ID_vermagic0

Example 8.17. Module symbols in .modinfo sections

6.3. Linker Scripts
In Example 8.7, “Sections ” we described how sections make up segments in the final output. It is the

job of the linker to build these sections into segments; to achieve this it uses a linker script which de-

scribes where segments start, what sections go into them and various other parameters.

Example 8.18, “The default linker script” shows an extract of the default linker script, which the link-

er will show when given its verbose flag via specifying -Wl,--verbose to gcc. The default script is

built-in to the linker and is based on the standard API definitions to create working user-space pro-

grams for the building platform.

Computer Science from the Bottom Up

254

1 $ gcc -Wl,--verbose -o test test.c

GNU ld (GNU Binutils for Debian) 2.26

...

using internal linker script:

5 ==

OUTPUT_FORMAT("elf64-x86-64", "elf64-x86-64",

"elf64-x86-64")

OUTPUT_ARCH(i386:x86-64)

ENTRY(_start)

10 SEARCH_DIR("=/usr/local/lib/x86_64-linux-gnu"); ...

SECTIONS

{

/* Read-only sections, merged into text segment: */

PROVIDE (__executable_start = SEGMENT_START("text-segment", 0x400000)); . = SEGMENT_START("text-segment", 0x400000) + SIZEOF_HEADERS;

15 .interp : { *(.interp) }

.note.gnu.build-id : { *(.note.gnu.build-id) }

.hash : { *(.hash) }

.gnu.hash : { *(.gnu.hash) }

.dynsym : { *(.dynsym) }

Computer Science from the Bottom Up

255

20 .dynstr : { *(.dynstr) }

.gnu.version : { *(.gnu.version) }

.gnu.version_d : { *(.gnu.version_d) }

.gnu.version_r : { *(.gnu.version_r) }

.rela.dyn :

25 {

...

}

PROVIDE (etext = .);

.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) }

30 .rodata1 : { *(.rodata1) }

...

Example 8.18. The default linker script

You can roughly see how the linker script specifies things like starting locations and what sections to

group into various segments. In the same way -Wl is used to pass the --verbose to the linker via

gcc, customised linker scripts can be provided by flags. Regular user-space developers are unlikely to

need to override the default linker script. However, often very customised applications such as kernel

builds require customised linker scripts.

7. ABIs

An ABI is a term you will hear a lot about when working with systems programming. We have talked

extensively about API, which are interfaces the programmer sees to your code.

ABI's refer to lower level interfaces which the compiler, operating system and, to some extent, proces-

Computer Science from the Bottom Up

256

sor, must agree on to communicate together. Below we introduce a number of concepts which are im-

portant to understanding ABI considerations.

7.1. Byte Order
Endianess

7.2. Calling Conventions

7.2.1. Passing parameters

registers or stack?

7.2.2. Function Descriptors

On many architectures you must call a function through a function descriptor, rather than directly.

For example, on IA64 a function descriptor consists of two components; the address of the function

(that being a 64 bit, or 8 byte value) and the address of the global pointer (gp). The ABI specifies that

r1 should always contain the gp value for a function. This means that when you call a function, it is the

callees job to save their gp value, set r1 to be the new value (from the function descriptor) and

then call the function.

This may seem like a strange way to do things, but it has very useful practical implications as you will

see in the next chapter about global offset tables. On IA64 an add instruction can only take a maxi-

mum 22 bit immediate value1. An immediate value is one that is specified directly, rather than in a reg-

ister (e.g. in add r1 + 100 100 is the immediate value).

You might recognise 22 bits as being able to represent 4194304 bytes, or 4MB. Thus each function can

directly offset into an area of memory 4MB big without having to take the penalty of loading any val-

ues into a register. If the compiler, linker and loader all agree on what the global pointer is pointing to

(as specified in the ABI) performance can be improved by less loading.

1. Technically this is because of the way IA64 bundles instructions. Three instructions are put into each

bundle, and there is only enough room to keep a 22 bit value to keep the bundle together.

Computer Science from the Bottom Up

257

8. Starting a process

We mentioned before that simply saying the program starts with the main() function is not quite

true. Below we examine what happens to a typical dynamically linked program when it is loaded and

run (statically linked programs are similar but different XXX should we go into this?).

Firstly, in response to an exec system call the kernel allocates the structures for a new process and

reads the ELF file specified from disk.

We mentioned that ELF has a program interpreter field, PT_INTERP , which can be set to 'interpret'

the program. For dynamically linked applications that interpreter is the dynamic linker, namely ld.so,

which allows some of the linking process to be done on the fly before the program starts.

In this case, the kernel also reads in the dynamic linker code, and starts the program from the entry

point address as specified by it. We examine the role of the dynamic linker in depth in the next chapter,

but suffice to say it does some setup like loading any libraries required by the application (as specified

in the dynamic section of the binary) and then starts execution of the program binary at its entry point

address (i.e. the _init function).

8.1. Kernel communication to programs
The kernel needs to communicate some things to programs when they start up; namely the arguments

to the program, the current environment variables and a special structure called the Auxiliary Vec-

tor or auxv (you can request the the dynamic linker show you some debugging output of the auxv

by specifying the environment value LD_SHOW_AUXV=1).

The arguments and environment at fairly straight forward, and the various incarnations of the exec

system call allow you to specify these for the program.

The kernel communicates this by putting all the required information on the stack for the newly creat-

ed program to pick up. Thus when the program starts it can use its stack pointer to find the all the start-

up information required.

The auxiliary vector is a special structure that is for passing information directly from the kernel to the

newly running program. It contains system specific information that may be required, such as the de-

fault size of a virtual memory page on the system or hardware capabilities; that is specific features

that the kernel has identified the underlying hardware has that userspace programs can take advantage

Computer Science from the Bottom Up

258

of.

8.1.1. Kernel Library

We mentioned previously that system calls are slow, and modern systems have mechanisms to avoid

the overheads of calling a trap to the processor.

In Linux, this is implemented by a neat trick between the dynamic loader and the kernel, all communi-

cated with the AUXV structure. The kernel actually adds a small shared library into the address space

of every newly created process which contains a function that makes system calls for you. The beauty

of this system is that if the underlying hardware supports a fast system call mechanism the kernel (be-

ing the creator of the library) can use it, otherwise it can use the old scheme of generating a trap. This

library is named linux-gate.so.1 , so called because it is a gateway to the inner workings of the

kernel.

When the kernel starts the dynamic linker it adds an entry to the auxv called AT_SYSINFO_EHDR ,

which is the address in memory that the special kernel library lives in. When the dynamic linker starts

it can look for the AT_SYSINFO_EHDR pointer, and if found load that library for the program. The pro-

gram has no idea this library exists; this is a private arrangement between the dynamic linker and the

kernel.

We mentioned that programmers make system calls indirectly through calling functions in the system

libraries, namely libc. libc can check to see if the special kernel binary is loaded, and if so use the

functions within that to make system calls. As we mentioned, if the kernel determines the hardware is

capable, this will use the fast system call method.

8.2. Starting the program
Once the kernel has loaded the interpreter it passes it to the entry point as given in the interpreter file

(note will not examine how the dynamic linker starts at this stage; see Chapter 9, Dynamic Linking for

a full discussion of dynamic linking). The dynamic linker will jump to the entry point address as given

in the ELF binary.

1 $ cat test.c

Computer Science from the Bottom Up

259

int main(void)

{

5 return 0;

}

$ gcc -o test test.c

10 $ readelf --headers ./test | grep Entry

Entry point address: 0x80482b0

$ objdump --disassemble ./test

15 [...]

080482b0 <_start>:

80482b0: 31 ed xor %ebp,%ebp

80482b2: 5e pop %esi

20 80482b3: 89 e1 mov %esp,%ecx

80482b5: 83 e4 f0 and $0xfffffff0,%esp

80482b8: 50 push %eax

Computer Science from the Bottom Up

260

80482b9: 54 push %esp

80482ba: 52 push %edx

25 80482bb: 68 00 84 04 08 push $0x8048400

80482c0: 68 90 83 04 08 push $0x8048390

80482c5: 51 push %ecx

80482c6: 56 push %esi

80482c7: 68 68 83 04 08 push $0x8048368

30 80482cc: e8 b3 ff ff ff call 8048284 <__libc_start_main@plt>

80482d1: f4 hlt

80482d2: 90 nop

80482d3: 90 nop

35 08048368 <main>:

8048368: 55 push %ebp

8048369: 89 e5 mov %esp,%ebp

804836b: 83 ec 08 sub $0x8,%esp

804836e: 83 e4 f0 and $0xfffffff0,%esp

40 8048371: b8 00 00 00 00 mov $0x0,%eax

8048376: 83 c0 0f add $0xf,%eax

8048379: 83 c0 0f add $0xf,%eax

Computer Science from the Bottom Up

261

804837c: c1 e8 04 shr $0x4,%eax

804837f: c1 e0 04 shl $0x4,%eax

45 8048382: 29 c4 sub %eax,%esp

8048384: b8 00 00 00 00 mov $0x0,%eax

8048389: c9 leave

804838a: c3 ret

804838b: 90 nop

50 804838c: 90 nop

804838d: 90 nop

804838e: 90 nop

804838f: 90 nop

55 08048390 <__libc_csu_init>:

8048390: 55 push %ebp

8048391: 89 e5 mov %esp,%ebp

[...]

60 08048400 <__libc_csu_fini>:

8048400: 55 push %ebp

Computer Science from the Bottom Up

262

[...]

Example 8.19. Disassembley of program startup

Above we investigate the very simplest program. Using readelf we can see that the entry point is the

_start function in the binary. At this point we can see in the disassembley some values are pushed

onto the stack. The first value, 0x8048400 is the __libc_csu_fini function; 0x8048390 is the

__libc_csu_init and then finally 0x8048368 , the main() function. After this the value

__libc_start_main function is called.

__libc_start_main is defined in the glibc sources sysdeps/generic/libc-start.c . The file

function is quite complicated and hidden between a large number of defines, as it needs to be portable

across the very wide number of systems and architectures that glibc can run on. It does a number of

specific things related to setting up the C library which the average programmer does not need to wor-

ry about. The next point where the library calls back into the program is to handle init code.

init and fini are two special concepts that call parts of code in shared libraries that may need to

be called before the library starts or if the library is unloaded respectively. You can see how this might

be useful for library programmers to setup variables when the library is started, or to clean up at the

end. Originally the functions _init and _fini were looked for in the library; however this became

somewhat limiting as everything was required to be in these functions. Below we will examine just

how the init / fini process works.

At this stage we can see that the __libc_start_main function will receive quite a few input para-

maters on the stack. Firstly it will have access to the program arguments, environment variables and

auxiliary vector from the kernel. Then the initalization function will have pushed onto the stack ad-

dresses for functions to handle init , fini , and finally the address of the main function itself.

We need some way to indicate in the source code that a function should be called by init or fini .

With gcc we use attributes to label two functions as constructors and destructors in our main program.

These terms are more commonly used with object oriented languages to describe object life cycles.

1 $ cat test.c

#include <stdio.h>

Computer Science from the Bottom Up

263

void __attribute__((constructor)) program_init(void) {

5 printf("init\n");

}

void __attribute__((destructor)) program_fini(void) {

printf("fini\n");

10 }

int main(void)

{

return 0;

15 }

$ gcc -Wall -o test test.c

$./test

20 init

fini

Computer Science from the Bottom Up

264

$ objdump --disassemble ./test | grep program_init

08048398 <program_init>:

25

$ objdump --disassemble ./test | grep program_fini

080483b0 <program_fini>:

$ objdump --disassemble ./test

30

[...]

08048280 <_init>:

8048280: 55 push %ebp

8048281: 89 e5 mov %esp,%ebp

35 8048283: 83 ec 08 sub $0x8,%esp

8048286: e8 79 00 00 00 call 8048304 <call_gmon_start>

804828b: e8 e0 00 00 00 call 8048370 <frame_dummy>

8048290: e8 2b 02 00 00 call 80484c0 <__do_global_ctors_aux>

8048295: c9 leave

40 8048296: c3 ret

[...]

Computer Science from the Bottom Up

265

080484c0 <__do_global_ctors_aux>:

80484c0: 55 push %ebp

45 80484c1: 89 e5 mov %esp,%ebp

80484c3: 53 push %ebx

80484c4: 52 push %edx

80484c5: a1 2c 95 04 08 mov 0x804952c,%eax

80484ca: 83 f8 ff cmp $0xffffffff,%eax

50 80484cd: 74 1e je 80484ed <__do_global_ctors_aux+0x2d>

80484cf: bb 2c 95 04 08 mov $0x804952c,%ebx

80484d4: 8d b6 00 00 00 00 lea 0x0(%esi),%esi

80484da: 8d bf 00 00 00 00 lea 0x0(%edi),%edi

80484e0: ff d0 call *%eax

55 80484e2: 8b 43 fc mov 0xfffffffc(%ebx),%eax

80484e5: 83 eb 04 sub $0x4,%ebx

80484e8: 83 f8 ff cmp $0xffffffff,%eax

80484eb: 75 f3 jne 80484e0 <__do_global_ctors_aux+0x20>

80484ed: 58 pop %eax

60 80484ee: 5b pop %ebx

80484ef: 5d pop %ebp

80484f0: c3 ret

Computer Science from the Bottom Up

266

80484f1: 90 nop

80484f2: 90 nop

65 80484f3: 90 nop

$ readelf --sections ./test

There are 34 section headers, starting at offset 0xfb0:

70

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 1

75 [2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 4

[3] .hash HASH 08048148 000148 00002c 04 A 4 0 4

[4] .dynsym DYNSYM 08048174 000174 000060 10 A 5 1 4

[5] .dynstr STRTAB 080481d4 0001d4 00005e 00 A 0 0 1

[6] .gnu.version VERSYM 08048232 000232 00000c 02 A 4 0 2

80 [7] .gnu.version_r VERNEED 08048240 000240 000020 00 A 5 1 4

[8] .rel.dyn REL 08048260 000260 000008 08 A 4 0 4

[9] .rel.plt REL 08048268 000268 000018 08 A 4 11 4

Computer Science from the Bottom Up

267

[10] .init PROGBITS 08048280 000280 000017 00 AX 0 0 4

[11] .plt PROGBITS 08048298 000298 000040 04 AX 0 0 4

85 [12] .text PROGBITS 080482e0 0002e0 000214 00 AX 0 0 16

[13] .fini PROGBITS 080484f4 0004f4 00001a 00 AX 0 0 4

[14] .rodata PROGBITS 08048510 000510 000012 00 A 0 0 4

[15] .eh_frame PROGBITS 08048524 000524 000004 00 A 0 0 4

[16] .ctors PROGBITS 08049528 000528 00000c 00 WA 0 0 4

90 [17] .dtors PROGBITS 08049534 000534 00000c 00 WA 0 0 4

[18] .jcr PROGBITS 08049540 000540 000004 00 WA 0 0 4

[19] .dynamic DYNAMIC 08049544 000544 0000c8 08 WA 5 0 4

[20] .got PROGBITS 0804960c 00060c 000004 04 WA 0 0 4

[21] .got.plt PROGBITS 08049610 000610 000018 04 WA 0 0 4

95 [22] .data PROGBITS 08049628 000628 00000c 00 WA 0 0 4

[23] .bss NOBITS 08049634 000634 000004 00 WA 0 0 4

[24] .comment PROGBITS 00000000 000634 00018f 00 0 0 1

[25] .debug_aranges PROGBITS 00000000 0007c8 000078 00 0 0 8

[26] .debug_pubnames PROGBITS 00000000 000840 000025 00 0 0 1

100 [27] .debug_info PROGBITS 00000000 000865 0002e1 00 0 0 1

[28] .debug_abbrev PROGBITS 00000000 000b46 000076 00 0 0 1

[29] .debug_line PROGBITS 00000000 000bbc 0001da 00 0 0 1

Computer Science from the Bottom Up

268

[30] .debug_str PROGBITS 00000000 000d96 0000f3 01 MS 0 0 1

[31] .shstrtab STRTAB 00000000 000e89 000127 00 0 0 1

105 [32] .symtab SYMTAB 00000000 001500 000490 10 33 53 4

[33] .strtab STRTAB 00000000 001990 000218 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)

110 O (extra OS processing required) o (OS specific), p (processor specific)

$ objdump --disassemble-all --section .ctors ./test

./test: file format elf32-i386

115

Contents of section .ctors:

8049528 ffffffff 98830408 00000000

Example 8.20. Constructors and Destructors

The last value pushed onto the stack for the __libc_start_main was the initialisation function

__libc_csu_init . If we follow the call chain through from __libc_csu_init we can see it does

some setup and then calls the _init function in the executable. The _init function eventually

calls a function called __do_global_ctors_aux . Looking at the disassembley of this function we

can see that it appears to start at address 0x804952c and loop along, reading an value and calling it.

We can see that this starting address is in the .ctors section of the file; if we have a look inside this

we see that it contains the first value -1 , a function address (in big endian format) and the value zero.

Computer Science from the Bottom Up

269

The address in big endian format is 0x08048398 , or the address of program_init function! So the

format of the .ctors section is firstly a -1, and then the address of functions to be called on initiali-

sation, and finally a zero to indicate the list is complete. Each entry will be called (in this case we only

have the one function).

Once __libc_start_main has completed with the _init call it finally calls the main() func-

tion! Remember that it had the stack setup initially with the arguments and environment pointers from

the kernel; this is how main gets its argc, argv[], envp[] arguments. The process now runs and

the setup phase is complete.

A similar process is enacted with the .dtors for destructors when the program exits.

__libc_start_main calls these when the main() function completes.

As you can see, a lot is done before the program gets to start, and even a little after you think it is fin-

ished!

Chapter 9. Dynamic Linking

1. Code Sharing

We know that for the operating system code is considered read only, and separate from data. It seems

logical then that if programs can not modify code and have large amounts of common code, instead of

replicating it for every executable it should be shared between many executables.

With virtual memory this can be easily done. The physical pages of memory the library code is loaded

into can be easily referenced by any number of virtual pages in any number of address spaces. So

while you only have one physical copy of the library code in system memory, every process can have

access to that library code at any virtual address it likes.

Thus people quickly came up with the idea of a shared library which, as the name suggests, is shared

by multiple executables. Each executable contains a reference essentially saying "I need library foo".

When the program is loaded, it is up to the system to either check if some other program has already

loaded the code for library foo into memory, and thus share it by mapping pages into the executable

for that physical memory, or otherwise load the library into memory for the executable.

This process is called dynamic linking because it does part of the linking process "on the fly" as pro-

Computer Science from the Bottom Up

270

grams are executed in the system.

1.1. Dynamic Library Details
Libraries are very much like a program that never gets started. They have code and data sections

(functions and variables) just like every executable; but no where to start running. They just provide a

library of functions for developers to call.

Thus ELF can represent a dynamic library just as it does an executable. There are some fundamental

differences, such as there is no pointer to where execution should start, but all shared libraries are just

ELF objects like any other executable.

The ELF header has two mutually exclusive flags, ET_EXEC and ET_DYN to mark an ELF file as ei-

ther an executable or a shared object file.

1.2. Including libraries in an executable

1.2.1. Compilation

When you compile your program that uses a dynamic library, object files are left with references to the

library functions just as for any other external reference.

You need to include the header for the library so that the compiler knows the specific types of the

functions you are calling. Note the compiler only needs to know the types associated with a function

(such as, it takes an int and returns a char *) so that it can correctly allocate space for the func-

tion call.1

1.2.2. Linking

Even though the dynamic linker does a lot of the work for shared libraries, the traditional linker still

has a role to play in creating the executable.

1. This has not always been the case with the C standard. Previously, compilers would assume that any

function it did not know about returned an int . On a 32 bit system, the size of a pointer is the same

size as an int , so there was no problem. However, with a 64 bit system, the size of a pointer is

generally twice the size of an int so if the function actually returns a pointer, its value will be de-

stroyed. This is clearly not acceptable, as the pointer will thus not point to valid memory. The C99

standard has changed such that you are required to specify the types of included functions.

Computer Science from the Bottom Up

271

The traditional linker needs to leave a pointer in the executable so that the dynamic linker knows what

library will satisfy the dependencies at runtime.

The dynamic section of the executable requires a NEEDED entry for each shared library that the exe-

cutable depends on.

Again, we can inspect these fields with the readelf program. Below we have a look at a very stan-

dard binary, /bin/ls

1 $ readelf --dynamic /bin/ls

Dynamic segment at offset 0x22f78 contains 27 entries:

Tag Type Name/Value

5 0x0000000000000001 (NEEDED) Shared library: [librt.so.1]

0x0000000000000001 (NEEDED) Shared library: [libacl.so.1]

0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

0x000000000000000c (INIT) 0x4000000000001e30

... snip ...

Example 9.1. Specifying Dynamic Libraries

You can see that it specifies three libraries. The most common library shared by most, if not all, pro-

grams on the system is libc . There are also some other libraries that the program needs to run cor-

rectly.

Reading the ELF file directly is sometimes useful, but the usual way to inspect a dynamically linked

executable is via ldd . ldd "walks" the dependencies of libraries for you; that is if a library depends

on another library, it will show it to you.

Computer Science from the Bottom Up

272

1 $ ldd /bin/ls

librt.so.1 => /lib/tls/librt.so.1 (0x2000000000058000)

libacl.so.1 => /lib/libacl.so.1 (0x2000000000078000)

libc.so.6.1 => /lib/tls/libc.so.6.1 (0x2000000000098000)

5 libpthread.so.0 => /lib/tls/libpthread.so.0 (0x20000000002e0000)

/lib/ld-linux-ia64.so.2 => /lib/ld-linux-ia64.so.2 (0x2000000000000000)

libattr.so.1 => /lib/libattr.so.1 (0x2000000000310000)

$ readelf --dynamic /lib/librt.so.1

10 Dynamic segment at offset 0xd600 contains 30 entries:

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

0x0000000000000001 (NEEDED) Shared library: [libpthread.so.0]

... snip ...

Example 9.2. Looking at dynamic libraries

We can see above that libpthread has been required from somewhere. If we do a little digging, we

can see that the requirement comes from librt .

2. The Dynamic Linker

The dynamic linker is the program that manages shared dynamic libraries on behalf of an executable.

It works to load libraries into memory and modify the program at runtime to call the functions in the

Computer Science from the Bottom Up

273

library.

ELF allows executables to specify an interpreter, which is a program that should be used to run the ex-

ecutable. The compiler and static linker set the interpreter of executables that rely on dynamic libraries

to be the dynamic linker.

1 ianw@lime:~/programs/csbu$ readelf --headers /bin/ls

Program Headers:

Type Offset VirtAddr PhysAddr

5 FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x4000000000000040 0x4000000000000040

0x0000000000000188 0x0000000000000188 R E 8

INTERP 0x00000000000001c8 0x40000000000001c8 0x40000000000001c8

0x0000000000000018 0x0000000000000018 R 1

10 [Requesting program interpreter: /lib/ld-linux-ia64.so.2]

LOAD 0x0000000000000000 0x4000000000000000 0x4000000000000000

0x0000000000022e40 0x0000000000022e40 R E 10000

LOAD 0x0000000000022e40 0x6000000000002e40 0x6000000000002e40

0x0000000000001138 0x00000000000017b8 RW 10000

15 DYNAMIC 0x0000000000022f78 0x6000000000002f78 0x6000000000002f78

0x0000000000000200 0x0000000000000200 RW 8

Computer Science from the Bottom Up

274

NOTE 0x00000000000001e0 0x40000000000001e0 0x40000000000001e0

0x0000000000000020 0x0000000000000020 R 4

IA_64_UNWIND 0x0000000000022018 0x4000000000022018 0x4000000000022018

20 0x0000000000000e28 0x0000000000000e28 R 8

Example 9.3. Checking the program interpreter

You can see above that the interpreter is set to be /lib/ld-linux-ia64.so.2, which is the dynamic linker.

When the kernel loads the binary for execution, it will check if the PT_INTERP field is present, and if

so load what it points to into memory and start it.

We mentioned that dynamically linked executables leave behind references that need to be fixed with

information that isn't available until runtime, such as the address of a function in a shared library. The

references that are left behind are called relocations.

2.1. Relocations
The essential part of the dynamic linker is fixing up addresses at runtime, which is the only time you

can know for certain where you are loaded in memory. A relocation can simply be thought of as a note

that a particular address will need to be fixed at load time. Before the code is ready to run you will

need to go through and read all the relocations and fix the addresses it refers to to point to the right

place.

Table 9.1. Relocation Example

Address Action

0x123456 Address of symbol "x"

0x564773 Function X

There are many types of relocation for each architecture, and each types exact behaviour is document-

ed as part of the ABI for the system. The definition of a relocation is quite straight forward.

1 typedef struct {

Computer Science from the Bottom Up

275

Elf32_Addr r_offset; <--- address to fix

Elf32_Word r_info; <--- symbol table pointer and relocation type

}

5

typedef struct {

Elf32_Addr r_offset;

Elf32_Word r_info;

Elf32_Sword r_addend;

10 } Elf32_Rela

Example 9.4. Relocation as defined by ELF

The r_offset field refers to the offset in the file that needs to be fixed up. The r_info field speci-

fies the type of relocation which describes what exactly must be done to fix this code up. The simplest

relocation usually defined for an architecture is simply the value of the symbol. In this case you simply

substitute the address of the symbol at the location specified, and the relocation has been "fixed-up".

The two types, one with an addend and one without specify different ways for the relocation to oper-

ate. An addend is simply something that should be added to the fixed up address to find the correct ad-

dress. For example, if the relocation is for the symbol i because the original code is doing something

like i[8] the addend will be set to 8. This means "find the address of i , and go 8 past it".

That addend value needs to be stored somewhere. The two solutions are covered by the two forms. In

the REL form the addend is actually store in the program code in the place where the fixed up address

should be. This means that to fix up the address properly, you need to first read the memory you are

about to fix up to get any addend, store that, find the "real" address, add the addend to it and then write

it back (over the addend). The RELA format specifies the addend right there in the relocation.

The trade offs of each approach should be clear. With REL you need to do an extra memory reference

to find the addend before the fixup, but you don't waste space in the binary because you use relocation

target memory. With RELA you keep the addend with the relocation, but waste that space in the on

Computer Science from the Bottom Up

276

disk binary. Most modern systems use RELA relocations.

2.1.1. Relocations in action

The example below shows how relocations work. We create two very simple shared libraries and ref-

erence one from in the other.

1 $ cat addendtest.c

extern int i[4];

int *j = i + 2;

5 $ cat addendtest2.c

int i[4];

$ gcc -nostdlib -shared -fpic -s -o addendtest2.so addendtest2.c

$ gcc -nostdlib -shared -fpic -o addendtest.so addendtest.c ./addendtest2.so

10

$ readelf -r ./addendtest.so

Relocation section '.rela.dyn' at offset 0x3b8 contains 1 entries:

Offset Info Type Sym. Value Sym. Name + Addend

Computer Science from the Bottom Up

277

15 0000000104f8 000f00000027 R_IA64_DIR64LSB 0000000000000000 i + 8

Example 9.5. Specifying Dynamic Libraries

We thus have one relocation in addendtest.so of type R_IA64_DIR64LSB . If you look this up in

the IA64 ABI, the acronym can be broken down to

1. R_IA64 : all relocations start with this prefix.

2. DIR64 : a 64 bit direct type relocation

3. LSB : Since IA64 can operate in big and little endian modes, this relocation is little endian

(least significant byte).

The ABI continues to say that that relocation means "the value of the symbol pointed to by the reloca-

tion, plus any addend". We can see we have an addend of 8, since sizeof(int) == 4 and we have

moved two int's into the array (*j = i + 2). So at runtime, to fix this relocation you need to find

the address of symbol i and put its value, plus 8 into 0x104f8 .

2.2. Position Independence
In an executable file, the code and data segment is given a specified base address in virtual memory.

The executable code is not shared, and each executable gets its own fresh address space. This means

that the compiler knows exactly where the data section will be, and can reference it directly.

Libraries have no such guarantee. They can know that their data section will be a specified offset from

the base address; but exactly where that base address is can only be known at runtime.

Consequently all libraries must be produced with code that can execute no matter where it is put into

memory, known as position independent code (or PIC for short). Note that the data section is still a

fixed offset from the code section; but to actually find the address of data the offset needs to be added

to the load address.

3. Global Offset Tables

You might have noticed a critical problem with relocations when thinking about the goals of a shared

library. We mentioned previously that the big advantage of a shared library with virtual memory is that

multiple programs can use the code in memory by sharing of pages.

Computer Science from the Bottom Up

278

The problem stems from the fact that libraries have no guarantee about where they will be put into

memory. The dynamic linker will find the most convenient place in virtual memory for each library re-

quired and place it there. Think about the alternative if this were not to happen; every library in the

system would require its own chunk of virtual memory so that no two overlapped. Every time a new

library were added to the system it would require allocation. Someone could potentially be a hog and

write a huge library, not leaving enough space for other libraries! And chances are, your program

doesn't ever want to use that library anyway.

Thus, if you modify the code of a shared library with a relocation, that code no longer becomes

sharable. We've lost the advantage of our shared library.

Below we explain the mechanism for doing this.

3.1. The Global Offset Table
So imagine the situation where we take the value of a symbol. With only relocations, we would have

the dynamic linker look up the memory address of that symbol and re-write the code to load that ad-

dress.

A fairly straight forward enhancement would be to set aside space in our binary to hold the address of

that symbol, and have the dynamic linker put the address there rather than in the code directly. This

way we never need to touch the code part of the binary.

The area that is set aside for these addresses is called the Global Offset Table, or GOT. The GOT lives

in a section of the ELF file called .got .

Computer Science from the Bottom Up

279

PROCESS 1

MEMORY
PHYSICAL

GOT/PLT

GOT/PLT

LIBRARY CODE

LIBRARY CODE

SHARED VARIABLE

VIRTUAL ADDRESSES

PROCESS 2

Figure 9.1. Memory access via the GOT

The GOT is private to each process, and the process must have write permissions to it. Conversely the

library code is shared and the process should have only read and execute permissions on the code; it

would be a serious security breach if the process could modify code.

Computer Science from the Bottom Up

280

3.1.1. The GOT in action

1 $ cat got.c

extern int i;

void test(void)

5 {

i = 100;

}

$ gcc -nostdlib -shared -o got.so ./got.c

10

$ objdump --disassemble ./got.so

./got.so: file format elf64-ia64-little

15 Disassembly of section .text:

0000000000000410 <test>:

410: 0d 10 00 18 00 21 [MFI] mov r2=r12

416: 00 00 00 02 00 c0 nop.f 0x0

Computer Science from the Bottom Up

281

20 41c: 81 09 00 90 addl r14=24,r1;;

420: 0d 78 00 1c 18 10 [MFI] ld8 r15=[r14]

426: 00 00 00 02 00 c0 nop.f 0x0

42c: 41 06 00 90 mov r14=100;;

430: 11 00 38 1e 90 11 [MIB] st4 [r15]=r14

25 436: c0 00 08 00 42 80 mov r12=r2

43c: 08 00 84 00 br.ret.sptk.many b0;;

$ readelf --sections ./got.so

There are 17 section headers, starting at offset 0x640:

30

Section Headers:

[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000

35 0000000000000000 0000000000000000 0 0 0

[1] .hash HASH 0000000000000120 00000120

00000000000000a0 0000000000000004 A 2 0 8

[2] .dynsym DYNSYM 00000000000001c0 000001c0

00000000000001f8 0000000000000018 A 3 e 8

Computer Science from the Bottom Up

282

40 [3] .dynstr STRTAB 00000000000003b8 000003b8

000000000000003f 0000000000000000 A 0 0 1

[4] .rela.dyn RELA 00000000000003f8 000003f8

0000000000000018 0000000000000018 A 2 0 8

[5] .text PROGBITS 0000000000000410 00000410

45 0000000000000030 0000000000000000 AX 0 0 16

[6] .IA_64.unwind_inf PROGBITS 0000000000000440 00000440

0000000000000018 0000000000000000 A 0 0 8

[7] .IA_64.unwind IA_64_UNWIND 0000000000000458 00000458

0000000000000018 0000000000000000 AL 5 5 8

50 [8] .data PROGBITS 0000000000010470 00000470

0000000000000000 0000000000000000 WA 0 0 1

[9] .dynamic DYNAMIC 0000000000010470 00000470

0000000000000100 0000000000000010 WA 3 0 8

[10] .got PROGBITS 0000000000010570 00000570

55 0000000000000020 0000000000000000 WAp 0 0 8

[11] .sbss NOBITS 0000000000010590 00000590

0000000000000000 0000000000000000 W 0 0 1

[12] .bss NOBITS 0000000000010590 00000590

0000000000000000 0000000000000000 WA 0 0 1

Computer Science from the Bottom Up

283

60 [13] .comment PROGBITS 0000000000000000 00000590

0000000000000026 0000000000000000 0 0 1

[14] .shstrtab STRTAB 0000000000000000 000005b6

000000000000008a 0000000000000000 0 0 1

[15] .symtab SYMTAB 0000000000000000 00000a80

65 0000000000000258 0000000000000018 16 12 8

[16] .strtab STRTAB 0000000000000000 00000cd8

0000000000000045 0000000000000000 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

70 I (info), L (link order), G (group), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Example 9.6. Using the GOT

Above we create a simple shared library which refers to an external symbol. We do not know the ad-

dress of this symbol at compile time, so we leave it for the dynamic linker to fix up at runtime.

But we want our code to remain sharable, in case other processes want to use our code as well.

The disassembly reveals just how we do this with the .got . On IA64 (the architecture which the li-

brary was compiled for) the register r1 is known as the global pointer and always points to where

the .got section is loaded into memory.

If we have a look at the readelf output we can see that the .got section starts 0x10570 bytes past

where library was loaded into memory. Thus if the library were to be loaded into memory at address

0x6000000000000000 the .got would be at 0x6000000000010570, and register r1 would always

point to this address.

Computer Science from the Bottom Up

284

Working backwards through the disassembly, we can see that we store the value 100 into the memory

address held in register r15 . If we look back we can see that register 15 holds the value of the memo-

ry address stored in register 14. Going back one more step, we see we load this address is found by

adding a small number to register 1. The GOT is simply a big long list of entries, one for each external

variable. This means that the GOT entry for the external variable i is stored 24 bytes (that is 3 64 bit

addresses).

1 $ readelf --relocs ./got.so

Relocation section '.rela.dyn' at offset 0x3f8 contains 1 entries:

Offset Info Type Sym. Value Sym. Name + Addend

5 000000010588 000f00000027 R_IA64_DIR64LSB 0000000000000000 i + 0

Example 9.7. Relocations against the GOT

We can also check out the relocation for this entry too. The relocation says "replace the value at offset

10588 with the memory location that symbol i is stored at".

We know that the .got starts at offset 0x10570 from the previous output. We have also seen how the

code loads an address 0x18 (24 in decimal) past this, giving us an address of 0x10570 + 0x18 =

0x10588 ... the address which the relocation is for!

So before the program begins, the dynamic linker will have fixed up the relocation to ensure that the

value of the memory at offset 0x10588 is the address of the global variable i !

4. Libraries

4.1. The Procedure Lookup Table
Libraries may contain many functions, and a program may end up including many libraries to get its

work done. A program may only use one or two functions from each library of the many available, and

depending on the run-time path through the code may use some functions and not others.

Computer Science from the Bottom Up

285

As we have seen, the process of dynamic linking is a fairly computationally intensive one, since it in-

volves looking up and searching through many tables. Anything that can be done to reduce the over-

heads will increase performance.

The Procedure Lookup Table (PLT) facilitates what is called lazy binding in programs. Binding is syn-

onymous with the fix-up process described above for variables located in the GOT. When an entry has

been "fixed-up" it is said to be "bound" to its real address.

As we mentioned, sometimes a program will include a function from a library but never actually call

that function, depending on user input. The process of binding this function is quite intensive, involv-

ing loading code, searching through tables and writing memory. To go through the process of binding

a function that is not used is simply a waste of time.

Lazy binding defers this expense until the actual function is called by using a PLT.

Each library function has an entry in the PLT, which initially points to some special dummy code.

When the program calls the function, it actually calls the PLT entry (in the same was as variables are

referenced through the GOT).

This dummy function will load a few parameters that need to be passed to the dynamic linker for it to

resolve the function and then call into a special lookup function of the dynamic linker. The dynamic

linker finds the real address of the function, and writes that location into the calling binary over the top

of the dummy function call.

Thus, the next time the function is called the address can be loaded without having to go back into the

dynamic loader again. If a function is never called, then the PLT entry will never be modified but there

will be no runtime overhead.

4.1.1. The PLT in action

Things start to get a bit hairy here! If nothing else, you should begin to appreciate that there is a fair bit

of work in resolving a dynamic symbol!

Let us consider the simple "hello World" application. This will only make one library call to printf

to output the string to the user.

1

Computer Science from the Bottom Up

286

$ cat hello.c

#include <stdio.h>

5 int main(void)

{

printf("Hello, World!\n");

return 0;

}

10

$ gcc -o hello hello.c

$ readelf --relocs ./hello

15 Relocation section '.rela.dyn' at offset 0x3f0 contains 2 entries:

Offset Info Type Sym. Value Sym. Name + Addend

6000000000000ed8 000700000047 R_IA64_FPTR64LSB 0000000000000000 _Jv_RegisterClasses + 0

6000000000000ee0 000900000047 R_IA64_FPTR64LSB 0000000000000000 __gmon_start__ + 0

20 Relocation section '.rela.IA_64.pltoff' at offset 0x420 contains 3 entries:

Offset Info Type Sym. Value Sym. Name + Addend

Computer Science from the Bottom Up

287

6000000000000f10 000200000081 R_IA64_IPLTLSB 0000000000000000 printf + 0

6000000000000f20 000800000081 R_IA64_IPLTLSB 0000000000000000 __libc_start_main + 0

6000000000000f30 000900000081 R_IA64_IPLTLSB 0000000000000000 __gmon_start__ + 0

Example 9.8. Hello World PLT example

We can see above that we have a R_IA64_IPLTLSB relocation for our printf symbol. This is say-

ing "put the address of symbol printf into memory address 0x6000000000000f10". We have to start

digging deeper to find the exact procedure that gets us the function.

Below we have a look at the disassembly of the main() function of the program.

1

4000000000000790 <main>:

4000000000000790: 00 08 15 08 80 05 [MII] alloc r33=ar.pfs,5,4,0

4000000000000796: 20 02 30 00 42 60 mov r34=r12

5 400000000000079c: 04 08 00 84 mov r35=r1

40000000000007a0: 01 00 00 00 01 00 [MII] nop.m 0x0

40000000000007a6: 00 02 00 62 00 c0 mov r32=b0

40000000000007ac: 81 0c 00 90 addl r14=72,r1;;

40000000000007b0: 1c 20 01 1c 18 10 [MFB] ld8 r36=[r14]

10 40000000000007b6: 00 00 00 02 00 00 nop.f 0x0

40000000000007bc: 78 fd ff 58 br.call.sptk.many b0=4000000000000520 <_init+0xb0>

40000000000007c0: 02 08 00 46 00 21 [MII] mov r1=r35

Computer Science from the Bottom Up

288

40000000000007c6: e0 00 00 00 42 00 mov r14=r0;;

40000000000007cc: 01 70 00 84 mov r8=r14

15 40000000000007d0: 00 00 00 00 01 00 [MII] nop.m 0x0

40000000000007d6: 00 08 01 55 00 00 mov.i ar.pfs=r33

40000000000007dc: 00 0a 00 07 mov b0=r32

40000000000007e0: 1d 60 00 44 00 21 [MFB] mov r12=r34

40000000000007e6: 00 00 00 02 00 80 nop.f 0x0

20 40000000000007ec: 08 00 84 00 br.ret.sptk.many b0;;

Example 9.9. Hello world main()

The call to 0x4000000000000520 must be us calling the printf function. We can find out where

this is by looking at the sections with readelf .

1

$ readelf --sections ./hello

There are 40 section headers, starting at offset 0x25c0:

5 Section Headers:

[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

Computer Science from the Bottom Up

289

10 ...

[11] .plt PROGBITS 40000000000004c0 000004c0

00000000000000c0 0000000000000000 AX 0 0 32

[12] .text PROGBITS 4000000000000580 00000580

00000000000004a0 0000000000000000 AX 0 0 32

15 [13] .fini PROGBITS 4000000000000a20 00000a20

0000000000000040 0000000000000000 AX 0 0 16

[14] .rodata PROGBITS 4000000000000a60 00000a60

000000000000000f 0000000000000000 A 0 0 8

[15] .opd PROGBITS 4000000000000a70 00000a70

20 0000000000000070 0000000000000000 A 0 0 16

[16] .IA_64.unwind_inf PROGBITS 4000000000000ae0 00000ae0

00000000000000f0 0000000000000000 A 0 0 8

[17] .IA_64.unwind IA_64_UNWIND 4000000000000bd0 00000bd0

00000000000000c0 0000000000000000 AL 12 c 8

25 [18] .init_array INIT_ARRAY 6000000000000c90 00000c90

0000000000000018 0000000000000000 WA 0 0 8

[19] .fini_array FINI_ARRAY 6000000000000ca8 00000ca8

0000000000000008 0000000000000000 WA 0 0 8

[20] .data PROGBITS 6000000000000cb0 00000cb0

Computer Science from the Bottom Up

290

30 0000000000000004 0000000000000000 WA 0 0 4

[21] .dynamic DYNAMIC 6000000000000cb8 00000cb8

00000000000001e0 0000000000000010 WA 5 0 8

[22] .ctors PROGBITS 6000000000000e98 00000e98

0000000000000010 0000000000000000 WA 0 0 8

35 [23] .dtors PROGBITS 6000000000000ea8 00000ea8

0000000000000010 0000000000000000 WA 0 0 8

[24] .jcr PROGBITS 6000000000000eb8 00000eb8

0000000000000008 0000000000000000 WA 0 0 8

[25] .got PROGBITS 6000000000000ec0 00000ec0

40 0000000000000050 0000000000000000 WAp 0 0 8

[26] .IA_64.pltoff PROGBITS 6000000000000f10 00000f10

0000000000000030 0000000000000000 WAp 0 0 16

[27] .sdata PROGBITS 6000000000000f40 00000f40

0000000000000010 0000000000000000 WAp 0 0 8

45 [28] .sbss NOBITS 6000000000000f50 00000f50

0000000000000008 0000000000000000 WA 0 0 8

[29] .bss NOBITS 6000000000000f58 00000f50

0000000000000008 0000000000000000 WA 0 0 8

[30] .comment PROGBITS 0000000000000000 00000f50

Computer Science from the Bottom Up

291

50 00000000000000b9 0000000000000000 0 0 1

[31] .debug_aranges PROGBITS 0000000000000000 00001010

0000000000000090 0000000000000000 0 0 16

[32] .debug_pubnames PROGBITS 0000000000000000 000010a0

0000000000000025 0000000000000000 0 0 1

55 [33] .debug_info PROGBITS 0000000000000000 000010c5

00000000000009c4 0000000000000000 0 0 1

[34] .debug_abbrev PROGBITS 0000000000000000 00001a89

0000000000000124 0000000000000000 0 0 1

[35] .debug_line PROGBITS 0000000000000000 00001bad

60 00000000000001fe 0000000000000000 0 0 1

[36] .debug_str PROGBITS 0000000000000000 00001dab

00000000000006a1 0000000000000001 MS 0 0 1

[37] .shstrtab STRTAB 0000000000000000 0000244c

000000000000016f 0000000000000000 0 0 1

65 [38] .symtab SYMTAB 0000000000000000 00002fc0

0000000000000b58 0000000000000018 39 60 8

[39] .strtab STRTAB 0000000000000000 00003b18

0000000000000479 0000000000000000 0 0 1

Key to Flags:

Computer Science from the Bottom Up

292

70 W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Example 9.10. Hello world sections

That address is (unsurprisingly) in the .plt section. So there we have our call into the PLT! But

we're not satisfied with that, let's keep digging further to see what we can uncover. We disassemble the

.plt section to see what that call actually does.

1

40000000000004c0 <.plt>:

40000000000004c0: 0b 10 00 1c 00 21 [MMI] mov r2=r14;;

40000000000004c6: e0 00 08 00 48 00 addl r14=0,r2

5 40000000000004cc: 00 00 04 00 nop.i 0x0;;

40000000000004d0: 0b 80 20 1c 18 14 [MMI] ld8 r16=[r14],8;;

40000000000004d6: 10 41 38 30 28 00 ld8 r17=[r14],8

40000000000004dc: 00 00 04 00 nop.i 0x0;;

40000000000004e0: 11 08 00 1c 18 10 [MIB] ld8 r1=[r14]

10 40000000000004e6: 60 88 04 80 03 00 mov b6=r17

40000000000004ec: 60 00 80 00 br.few b6;;

40000000000004f0: 11 78 00 00 00 24 [MIB] mov r15=0

40000000000004f6: 00 00 00 02 00 00 nop.i 0x0

Computer Science from the Bottom Up

293

40000000000004fc: d0 ff ff 48 br.few 40000000000004c0 <_init+0x50>;;

15 4000000000000500: 11 78 04 00 00 24 [MIB] mov r15=1

4000000000000506: 00 00 00 02 00 00 nop.i 0x0

400000000000050c: c0 ff ff 48 br.few 40000000000004c0 <_init+0x50>;;

4000000000000510: 11 78 08 00 00 24 [MIB] mov r15=2

4000000000000516: 00 00 00 02 00 00 nop.i 0x0

20 400000000000051c: b0 ff ff 48 br.few 40000000000004c0 <_init+0x50>;;

4000000000000520: 0b 78 40 03 00 24 [MMI] addl r15=80,r1;;

4000000000000526: 00 41 3c 70 29 c0 ld8.acq r16=[r15],8

400000000000052c: 01 08 00 84 mov r14=r1;;

4000000000000530: 11 08 00 1e 18 10 [MIB] ld8 r1=[r15]

25 4000000000000536: 60 80 04 80 03 00 mov b6=r16

400000000000053c: 60 00 80 00 br.few b6;;

4000000000000540: 0b 78 80 03 00 24 [MMI] addl r15=96,r1;;

4000000000000546: 00 41 3c 70 29 c0 ld8.acq r16=[r15],8

400000000000054c: 01 08 00 84 mov r14=r1;;

30 4000000000000550: 11 08 00 1e 18 10 [MIB] ld8 r1=[r15]

4000000000000556: 60 80 04 80 03 00 mov b6=r16

400000000000055c: 60 00 80 00 br.few b6;;

4000000000000560: 0b 78 c0 03 00 24 [MMI] addl r15=112,r1;;

Computer Science from the Bottom Up

294

4000000000000566: 00 41 3c 70 29 c0 ld8.acq r16=[r15],8

35 400000000000056c: 01 08 00 84 mov r14=r1;;

4000000000000570: 11 08 00 1e 18 10 [MIB] ld8 r1=[r15]

4000000000000576: 60 80 04 80 03 00 mov b6=r16

400000000000057c: 60 00 80 00 br.few b6;;

Example 9.11. Hello world PLT

Let us step through the instructions. Firstly, we add 80 to the value in r1, storing it in r15. We know

from before that r1 will be pointing to the GOT, so this is saying "store in r15 80 bytes into the GOT".

The next thing we do is load into r16 the value stored in this location in the GOT, and post increment

the value in r15 by 8 bytes. We then store r1 (the location of the GOT) in r14 and set r1 to be the value

in the next 8 bytes after r15. Then we branch to r16.

In the previous chapter we discussed how functions are actually called through a function descriptor

which contains the function address and the address of the global pointer. Here we can see that the

PLT entry is first loading the function value, moving on 8 bytes to the second part of the function de-

scriptor and then loading that value into the op register before calling the function.

But what exactly are we loading? We know that r1 will be pointing to the GOT. We go 80 bytes past

the got (0x50)

1

$ objdump --disassemble-all ./hello

Disassembly of section .got:

5 6000000000000ec0 <.got>:

...

Computer Science from the Bottom Up

295

6000000000000ee8: 80 0a 00 00 00 00 data8 0x02a000000

6000000000000eee: 00 40 90 0a dep r0=r0,r0,63,1

6000000000000ef2: 00 00 00 00 00 40 [MIB] (p20) break.m 0x1

10 6000000000000ef8: a0 0a 00 00 00 00 data8 0x02a810000

6000000000000efe: 00 40 50 0f br.few 6000000000000ef0 <_GLOBAL_OFFSET_TABLE_+0x30>

6000000000000f02: 00 00 00 00 00 60 [MIB] (p58) break.m 0x1

6000000000000f08: 60 0a 00 00 00 00 data8 0x029818000

6000000000000f0e: 00 40 90 06 br.few 6000000000000f00 <_GLOBAL_OFFSET_TABLE_+0x40>

15 Disassembly of section .IA_64.pltoff:

6000000000000f10 <.IA_64.pltoff>:

6000000000000f10: f0 04 00 00 00 00 [MIB] (p39) break.m 0x0

6000000000000f16: 00 40 c0 0e 00 00 data8 0x03b010000

20 6000000000000f1c: 00 00 00 60 data8 0xc000000000

6000000000000f20: 00 05 00 00 00 00 [MII] (p40) break.m 0x0

6000000000000f26: 00 40 c0 0e 00 00 data8 0x03b010000

6000000000000f2c: 00 00 00 60 data8 0xc000000000

6000000000000f30: 10 05 00 00 00 00 [MIB] (p40) break.m 0x0

25 6000000000000f36: 00 40 c0 0e 00 00 data8 0x03b010000

Computer Science from the Bottom Up

296

6000000000000f3c: 00 00 00 60 data8 0xc000000000

Example 9.12. Hello world GOT

0x6000000000000ec0 + 0x50 = 0x6000000000000f10, or the .IA_64.pltoff section. Now we're

starting to get somewhere!

We can decode the objdump output so we can see exactly what is being loaded here. Swapping the

byte order of the first 8 bytes f0 04 00 00 00 00 00 40 we end up with 0x4000000000004f0 .

Now that address looks familiar! Looking back up at the assemble output of the PLT we see that ad-

dress.

The code at 0x4000000000004f0 firstly puts a zero value into r15, and then branches back to

0x40000000000004c0 . Wait a minute! That's the start of our PLT section.

We can trace this code through too. Firstly we save the value of the global pointer (r2) then we load

three 8 byte values into r16 , r17 and finally, r1 . We then branch to the address in r17 . What we

are seeing here is the actual call into the dynamic linker!

We need to delve into the ABI to understand exactly what is being loaded at this point. The ABI says

two things -- dynamically linked programs must have a special section (called the

DT_IA_64_PLT_RESERVE section) that can hold three 8 byte values. There is a pointer where this re-

served area in the dynamic segment of the binary.

1

Dynamic segment at offset 0xcb8 contains 25 entries:

Tag Type Name/Value

5 0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

0x000000000000000c (INIT) 0x4000000000000470

0x000000000000000d (FINI) 0x4000000000000a20

Computer Science from the Bottom Up

297

0x0000000000000019 (INIT_ARRAY) 0x6000000000000c90

0x000000000000001b (INIT_ARRAYSZ) 24 (bytes)

10 0x000000000000001a (FINI_ARRAY) 0x6000000000000ca8

0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)

0x0000000000000004 (HASH) 0x4000000000000200

0x0000000000000005 (STRTAB) 0x4000000000000330

0x0000000000000006 (SYMTAB) 0x4000000000000240

15 0x000000000000000a (STRSZ) 138 (bytes)

0x000000000000000b (SYMENT) 24 (bytes)

0x0000000000000015 (DEBUG) 0x0

0x0000000070000000 (IA_64_PLT_RESERVE) 0x6000000000000ec0 -- 0x6000000000000ed8

0x0000000000000003 (PLTGOT) 0x6000000000000ec0

20 0x0000000000000002 (PLTRELSZ) 72 (bytes)

0x0000000000000014 (PLTREL) RELA

0x0000000000000017 (JMPREL) 0x4000000000000420

0x0000000000000007 (RELA) 0x40000000000003f0

0x0000000000000008 (RELASZ) 48 (bytes)

25 0x0000000000000009 (RELAENT) 24 (bytes)

0x000000006ffffffe (VERNEED) 0x40000000000003d0

0x000000006fffffff (VERNEEDNUM) 1

Computer Science from the Bottom Up

298

0x000000006ffffff0 (VERSYM) 0x40000000000003ba

0x0000000000000000 (NULL) 0x0

Example 9.13. Dynamic Segment

Do you notice anything about it? Its the same value as the GOT. This means that the first three 8 byte

entries in the GOT are actually the reserved area; thus will always be pointed to by the global pointer.

When the dynamic linker starts it is its duty to fill these values in. The ABI says that the first value

will be filled in by the dynamic linker giving this module a unique ID. The second value is the global

pointer value for the dynamic linker, and the third value is the address of the function that finds and

fixes up the symbol.

1

/* Set up the loaded object described by L so its unrelocated PLT

entries will jump to the on-demand fixup code in dl-runtime.c. */

5 static inline int __attribute__ ((unused, always_inline))

elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)

{

extern void _dl_runtime_resolve (void);

extern void _dl_runtime_profile (void);

10

if (lazy)

{

Computer Science from the Bottom Up

299

register Elf64_Addr gp __asm__ ("gp");

Elf64_Addr *reserve, doit;

15

/*

* Careful with the typecast here or it will try to add l-l_addr

* pointer elements

*/

20 reserve = ((Elf64_Addr *)

(l->l_info[DT_IA_64 (PLT_RESERVE)]->d_un.d_ptr + l->l_addr));

/* Identify this shared object. */

reserve[0] = (Elf64_Addr) l;

25 /* This function will be called to perform the relocation. */

if (!profile)

doit = (Elf64_Addr) ((struct fdesc *) &_dl_runtime_resolve)->ip;

else

{

30 if (GLRO(dl_profile) != NULL

&& _dl_name_match_p (GLRO(dl_profile), l))

{

Computer Science from the Bottom Up

300

/* This is the object we are looking for. Say that we really

want profiling and the timers are started. */

35 GL(dl_profile_map) = l;

}

doit = (Elf64_Addr) ((struct fdesc *) &_dl_runtime_profile)->ip;

}

40 reserve[1] = doit;

reserve[2] = gp;

}

return lazy;

45 }

Example 9.14. Code in the dynamic linker for setting up special values (from libc

sysdeps/ia64/dl-machine.h)

We can see how this gets setup by the dynamic linker by looking at the function that does this for the

binary. The reserve variable is set from the PLT_RESERVE section pointer in the binary. The

unique value (put into reserve[0]) is the address of the link map for this object. Link maps are the

internal representation within glibc for shared objects. We then put in the address of _dl_run-

time_resolve to the second value (assuming we are not using profiling). reserve[2] is finally set

to gp, which has been found from r2 with the __asm__ call.

Looking back at the ABI, we see that the relocation index for the entry must be placed in r15

and the unique identifier must be passed in r16 .

Computer Science from the Bottom Up

301

r15 has previously been set in the stub code, before we jumped back to the start of the PLT. Have a

look down the entries, and notice how each PLT entry loads r15 with an incremented value? It

should come as no surprise if you look at the relocations the printf relocation is number zero.

r16 we load up from the values that have been initialised by the dynamic linker, as previously dis-

cussed. Once that is ready, we can load the function address and global pointer and branch into the

function.

What happens at this point is the dynamic linker function _dl_runtime_resolve is run. It finds the

relocation; remember how the relocation specified the name of the symbol? It uses this name to find

the right function; this might involve loading the library from disk if it is not already in memory, or

otherwise sharing the code.

The relocation record provides the dynamic linker with the address it needs to "fix up"; remember it

was in the GOT and loaded by the initial PLT stub? This means that after the first time the function is

called, the second time it is loaded it will get the direct address of the function; short circuiting the dy-

namic linker.

4.1.2. Summary

You've seen the exact mechanism behind the PLT, and consequently the inner workings of the dynamic

linker. The important points to remember are

• Library calls in your program actually call a stub of code in the PLT of the binary.

• That stub code loads an address and jumps to it.

• Initially, that address points to a function in the dynamic linker which is capable of looking

up the "real" function, given the information in the relocation entry for that function.

• The dynamic linker re-writes the address that the stub code reads, so that the next time the

function is called it will go straight to the right address.

5. Working with libraries and the linker

The presence of the dynamic linker provides both some advantages we can utilise and some extra is-

sues that need to be resolved to get a functional system.

Computer Science from the Bottom Up

302

5.1. Library versions
One potential issue is different versions of libraries. With only static libraries there is much less poten-

tial for problems, as all library code is built directly into the binary of the application. If you want to

use a new version of the library you need to recompile it into a new binary, replacing the old one.

This is obviously fairly impractical for common libraries, the most common of course being libc

which is included in most all applications. If it were only available as a static library any change

would require every single application in the system be rebuilt.

However, changes in the way the dynamic library work could cause multiple problems. In the best

case, the modifications are completely compatible and nothing externally visible is changed. On the

other hand the changes might cause the application to crash; for example if a function that used to take

an int changes to take an int * . Worse, the new library version could have changed semantics

and suddenly start silently returning different, possibly wrong values. This can be a very nasty bug to

try and track down; when an application crashes you can use a debugger to isolate where the error oc-

curs whilst data corruption or modification may only show up in seemingly unrelated parts of the ap-

plication.

The dynamic linker requires a way to determine the version of libraries within the system so that new-

er revisions can be identified. There are a number of schemes a modern dynamic linker can use to find

the right versions of libraries.

5.1.1. sonames

Using sonames we can add some extra information to a library to help identify versions.

As we have seen previously, an application lists the libraries it requires in DT_NEEDED fields in the

dynamic section of the binary. The actual library is held in a file on disc, usually in /lib for core

system libraries or /usr/lib for optional libraries.

To allow multiple versions of the library to exist on disk, they obviously require differing file names.

The soname scheme uses a combination of names and file system links to build a hierarchy of li-

braries.

This is done by introducing the concept of major and minor library revisions. A minor revision is one

wholly backwards compatible with a previous version of the library; this usually consists of only bug

fixes. A major revision is therefore any revision that is not compatible; e.g. changes the inputs to func-

Computer Science from the Bottom Up

303

tions or the way a function behaves.

As each library revision, major or minor, will need to be kept in a separate file on disk, this forms the

basis of the library hierarchy. The library name is by convention libNAME.so.MAJOR.MINOR 1. How-

ever, if every application were directly linked against this file we would have the same issue as with a

static library; every time a minor change happened we would need to rebuild the application to point

to the new library.

What we really want to refer to is the major number of the library. If this changes, we reasonably are

required to recompile our application, since we need to make sure our program is still compatible with

the new library.

Thus the soname is the libNAME.so.MAJOR . The soname should be set in the DT_SONAME field

of the dynamic section in a shared library; the library author can specify this version when they build

the library.

Thus each minor version library file on disc can specify the same major version number in its

DT_SONAME field, allowing the dynamic linker to know that this particular library file implements a

particular major revision of the library API and ABI.

To keep track of this, an application called ldconfig is commonly run to create symbolic links named

for the major version to the latest minor version on the system. ldconfig works by running through all

the libraries that implement a particular major revision number, and then picks out the one with the

highest minor revision. It then creates a symbolic link from libNAME.so.MAJOR to the actual library

file on disc, i.e. libNAME.so.MAJOR.MINOR .

XXX : talk about libtool versions

The final piece of the hierarchy is the compile name for the library. When you compile your program,

to link against a library you use the -lNAME flag, which goes off searching for the libNAME.so file

in the library search path. Notice however, we have not specified any version number; we just want to

link against the latest library on the system. It is up to the installation procedure for the library to cre-

ate the symbolic link between the compile libNAME.so name and the latest library code on the sys-

tem. Usually this is handled by your package management system (dpkg or rpm). This is not an auto-

mated process because it is possible that the latest library on the system may not be the one you wish

to always compile against; for example if the latest installed library were a development version not

1. You can optionally have a release as a final identifier after the minor number. Generally this is

enough to distinguish all the various versions library.

Computer Science from the Bottom Up

304

appropriate for general use.

The general process is illustrated below.

Major Revision 2

libfoo.so.2

libfoo.so.2.0

Minor Revision 0

Major Revision 1

libfoo.so.1

libfoo.so.1.2

Minor Revision 2

Major Revision 1

libfoo.so.1

libfoo.so.1.1

Minor Revision 1
DT_NEEDED

libfoo.so.1

/usr/lib/libfoo.so.2

/usr/lib

/usr/lib/libfoo.so

$ gcc -o test test.c -lfoo

N
ew

er
 re

vi
si

on
s

File Name
soname

Old Application

New Build

Figure 9.2. sonames

5.1.1.1. How the dynamic linker looks up libraries

When the application starts, the dynamic linker looks at the DT_NEEDED field to find the required li-

braries. This field contains the soname of the library, so the next step is for the dynamic linker to

walk through all the libraries in its search path looking for it.

This process conceptually involves two steps. Firstly the dynamic linker needs to search through all

Computer Science from the Bottom Up

305

the libraries to find those that implement the given soname . Secondly the file names for the minor re-

visions need to be compared to find the latest version, which is then ready to be loaded.

We mentioned previously that there is a symbolic link setup by ldconfig between the library soname

and the latest minor revision. Thus the dynamic linker should need to only follow that link to find the

correct file to load, rather than having to open all possible libraries and decide which one to go with

each time the application is required.

Since file system access is so slow, ldconfig also creates a cache of libraries installed in the system.

This cache is simply a list of soname s of libraries available to the dynamic linker and a pointer to the

major version link on disk, saving the dynamic linker having to read entire directories full of files to

locate the correct link. You can analyse this with /sbin/ldconfig -p; it actually lives in the file /etc/

ldconfig.so.cache . If the library is not found in the cache the dynamic linker will fall back to the

slower option of walking the file system, thus it is important to re-run ldconfig when new libraries are

installed.

5.2. Finding symbols
We've already discussed how the dynamic linker gets the address of a library function and puts it in the

PLT for the program to use. But so far we haven't discussed just how the dynamic linker finds the ad-

dress of the function. The whole process is called binding, because the symbol name is bound to the

address it represents.

The dynamic linker has a few pieces of information; firstly the symbol that it is searching for, and sec-

ondly a list of libraries that that symbol might be in, as defined by the DT_NEEDED fields in the bina-

ry.

Each shared object library has a section, marked SHT_DYNSYM and called .dynsym which is the

minimal set of symbols required for dynamic linking -- that is any symbol in the library that may be

called by an external program.

5.2.1. Dynamic Symbol Table

In fact, there are three sections that all play a part in describing the dynamic symbols. Firstly, let us

look at the definition of a symbol from the ELF specification

Computer Science from the Bottom Up

306

1 typedef struct {

Elf32_Word st_name;

Elf32_Addr st_value;

Elf32_Word st_size;

5 unsigned char st_info;

unsigned char st_other;

Elf32_Half st_shndx;

} Elf32_Sym;

Example 9.15. Symbol definition from ELF

Table 9.2. ELF symbol fields

Field Value

st_name An index to the string table

st_value
Value - in a relocatable shared object this holds the offset from the section of index giv-

en in st_shndx

st_size Any associated size of the symbol

st_info
Information on the binding of the symbol (described below) and what type of symbol

this is (a function, object, etc).

st_other Not currently used

st_shndx Index of the section this symbol resides in (see st_value

As you can see, the actual string of the symbol name is held in a separate section (.dynstr ; the entry

in the .dynsym section only holds an index into the string section. This creates some level of over-

head for the dynamic linker; the dynamic linker must read all of the symbol entries in the .dynsym

section and then follow the index pointer to find the symbol name for comparison.

To speed this process up, a third section called .hash is introduced, containing a hash table of sym-

Computer Science from the Bottom Up

307

bol names to symbol table entries. This hash table is pre-computed when the library is built and allows

the dynamic linker to find the symbol entry much faster, generally with only one or two lookups.

5.2.2. Symbol Binding

Whilst we usually say the process of finding the address of a symbol refers is the process of binding

that symbol, the symbol binding has a separate meaning.

The binding of a symbol dictates its external visibility during the dynamic linking process. A local

symbol is not visible outside the object file it is defined in. A global symbol is visible to other object

files, and can satisfy undefined references in other objects.

A weak reference is a special type of lower priority global reference. This means it is designed to be

overridden, as we will see shortly.

Below we have an example C program which we analyse to inspect the symbol bindings.

1 $ cat test.c

static int static_variable;

extern int extern_variable;

5

int external_function(void);

int function(void)

{

10 return external_function();

}

Computer Science from the Bottom Up

308

static int static_function(void)

{

15 return 10;

}

#pragma weak weak_function

int weak_function(void)

20 {

return 10;

}

$ gcc -c test.c

25 $ objdump --syms test.o

test.o: file format elf32-powerpc

SYMBOL TABLE:

30 00000000 l df *ABS* 00000000 test.c

00000000 l d .text 00000000 .text

Computer Science from the Bottom Up

309

00000000 l d .data 00000000 .data

00000000 l d .bss 00000000 .bss

00000038 l F .text 00000024 static_function

35 00000000 l d .sbss 00000000 .sbss

00000000 l O .sbss 00000004 static_variable

00000000 l d .note.GNU-stack 00000000 .note.GNU-stack

00000000 l d .comment 00000000 .comment

00000000 g F .text 00000038 function

40 00000000 *UND* 00000000 external_function

0000005c w F .text 00000024 weak_function

$ nm test.o

U external_function

45 00000000 T function

00000038 t static_function

00000000 s static_variable

0000005c W weak_function

Example 9.16. Examples of symbol bindings

Notice the use of #pragma to define the weak symbol. A pragma is a way of communicating extra

information to the compiler; its use is not common but occasionally is required to get the compiler to

do out of the ordinary operations.x

Computer Science from the Bottom Up

310

We inspect the symbols with two different tools; in both cases the binding is shown in the second col-

umn; the codes should be quite straight forward (are are documented in the tools man page).

5.2.2.1. Overriding symbols

It is often very useful for a programmer to be able to override a symbol in a library; that is to subvert

the normal symbol with a different definition.

We mentioned that the order that libraries is searched is given by the order of the DT_NEEDED fields

within the library. However, it is possible to insert libraries as the last libraries to be searched; this

means that any symbols within them will be found as the final reference.

This is done via an environment variable called LD_PRELOAD which specifies libraries that the linker

should load last.

1 $ cat override.c

#define _GNU_SOURCE 1

#include <stdio.h>

#include <stdlib.h>

5 #include <unistd.h>

#include <sys/types.h>

#include <dlfcn.h>

pid_t getpid(void)

10 {

pid_t (*orig_getpid)(void) = dlsym(RTLD_NEXT, "getpid");

printf("Calling GETPID\n");

Computer Science from the Bottom Up

311

return orig_getpid();

15 }

$ cat test.c

#include <stdio.h>

#include <stdlib.h>

20 #include <unistd.h>

int main(void)

{

printf("%d\n", getpid());

25 }

$ gcc -shared -fPIC -o liboverride.so override.c -ldl

$ gcc -o test test.c

$ LD_PRELOAD=./liboverride.so ./test

30 Calling GETPID

Computer Science from the Bottom Up

312

15187

Example 9.17. Example of LD_PRELOAD

In the above example we override the getpid function to print out a small statement when it is

called. We use the dlysm function provided by libc with an argument telling it to continue on and

find the next symbol called getpid .

5.2.2.1.1. Weak symbols over time

The concept of the weak symbol is that the symbol is marked as a lower priority and can be overridden

by another symbol. Only if no other implementation is found will the weak symbol be the one that it

used.

The logical extension of this for the dynamic loader is that all libraries should be loaded, and any weak

symbols in those libraries should be ignored for normal symbols in any other library. This was indeed

how weak symbol handling was originally implemented in Linux by glibc.

However, this was actually incorrect to the letter of the Unix standard at the time (SysVr4). The stan-

dard actually dictates that weak symbols should only be handled by the static linker; they should re-

main irrelevant to the dynamic linker (see the section on binding order below).

At the time, the Linux implementation of making the dynamic linker override weak symbols matched

with SGI's IRIX platform, but differed to others such as Solaris and AIX. When the developers re-

alised this behaviour violated the standard it was reversed, and the old behaviour relegated to requiring

a special environment flag (LD_DYNAMIC_WEAK) be set.

5.2.2.2. Specifying binding order

We have seen how we can override a function in another library by preloading another shared library

with the same symbol defined. The symbol that gets resolved as the final one is the last one in the or-

der that the dynamic loader loads the libraries.

Libraries are loaded in the order they are specified in the DT_NEEDED flag of the binary. This in turn

is decided from the order that libraries are passed in on the command line when the object is built.

When symbols are to be located, the dynamic linker starts at the last loaded library and works back-

wards until the symbol is found.

Some shared libraries, however, need a way to override this behaviour. They need to say to the dynam-

ic linker "look first inside me for these symbols, rather than working backwards from the last loaded

Computer Science from the Bottom Up

313

library". Libraries can set the DT_SYMBOLIC flag in their dynamic section header to get this behaviour

(this is usually set by passing the -Bsymbolic flag on the static linkers command line when building

the shared library).

What this flag is doing is controlling symbol visibility. The symbols in the library can not be overrid-

den so could be considered private to the library that is being loaded.

However, this loses a lot of granularity since the library is either flagged for this behaviour, or it is not.

A better system would allow us to make some symbols private and some symbols public.

5.2.2.3. Symbol Versioning

That better system comes from symbol versioning. With symbol versioning we specify some extra in-

put to the static linker to give it some more information about the symbols in our shared library.

1 $ cat Makefile

all: test testsym

clean:

5 rm -f *.so test testsym

liboverride.so : override.c

$(CC) -shared -fPIC -o liboverride.so override.c

10 libtest.so : libtest.c

$(CC) -shared -fPIC -o libtest.so libtest.c

Computer Science from the Bottom Up

314

libtestsym.so : libtest.c

$(CC) -shared -fPIC -Wl,-Bsymbolic -o libtestsym.so libtest.c

15

test : test.c libtest.so liboverride.so

$(CC) -L. -ltest -o test test.c

testsym : test.c libtestsym.so liboverride.so

20 $(CC) -L. -ltestsym -o testsym test.c

$ cat libtest.c

#include <stdio.h>

25 int foo(void) {

printf("libtest foo called\n");

return 1;

}

30 int test_foo(void)

{

return foo();

Computer Science from the Bottom Up

315

}

35 $ cat override.c

#include <stdio.h>

int foo(void)

{

40 printf("override foo called\n");

return 0;

}

$ cat test.c

45 #include <stdio.h>

int main(void)

{

printf("%d\n", test_foo());

50 }

$ cat Versions

Computer Science from the Bottom Up

316

{global: test_foo; local: *; };

55 $ gcc -shared -fPIC -Wl,-version-script=Versions -o libtestver.so libtest.c

$ gcc -L. -ltestver -o testver test.c

$ LD_LIBRARY_PATH=. LD_PRELOAD=./liboverride.so ./testver

60 libtest foo called

100000574 l F .text 00000054 foo

000005c8 g F .text 00000038 test_foo

Example 9.18. Example of symbol versioning

In the simplest case as above, we simply state if the symbol is global or local. Thus in the case above

the foo function is most likely a support function for test_foo ; whilst we are happy for the over-

all functionality of the test_foo function to be overridden, if we do use the shared library version it

needs to have unaltered access nobody should modify the support function.

This allows us to keep our namespace better organised. Many libraries might want to implement

something that could be named like a common function like read or write ; however if they all did

the actual version given to the program might be completely wrong. By specifying symbols as local

only the developer can be sure that nothing will conflict with that internal name, and conversely the

name he chose will not influence any other program.

An extension of this scheme is symbol versioning. With this you can specify multiple versions of the

same symbol in the same library. The static linker appends some version information after the symbol

name (something like @VER) describing what version the symbol is given.

Computer Science from the Bottom Up

317

If the developer implements a function that has the same name but possibly a binary or programatical-

ly different implementation he can increase the version number. When new applications are built

against the shared library, they will pick up the latest version of the symbol. However, applications

built against earlier versions of the same library will be requesting older versions (e.g. will have older

@VER strings in the symbol name they request) and thus get the original implementation. XXX : ex-

ample

Glossary

A

Application Binary Interface

A technical description of how the operating system should interface with hardware.

See also Application Programming Interface.

Application Programming Interface

The set of variables and functions used to communicate between different parts of programs.

See also Application Binary Interface.

E

Extensible Markup Language

Some reasonable definition here.

See also Standardised Generalised Markup Language.

Standardised Generalised Markup Language

The grand daddy of all documents

See also Extensible Markup Language.

Computer Science from the Bottom Up

318

M

MMU

The memory managment unit component of the hardware architecture.

Mutually Exclusive

When a number of things are mutually exclusive, only one can be valid at a time. The fact that

one of the things is valid makes the others invalid.

O

Open Source

Software distributed in source form under licenses guaranteeing anybody rights to freely use,

modify, and redistribute the code.

S

Shell

The interface used to interact with the operating system.

Computer Science from the Bottom Up

319

	Computer Science from the Bottom Up
	Ian Wienand
	Introduction
	Welcome
	Philosophy
	Why from the bottom up?
	Enabling Technologies

	Chapter 1. General Unix and Advanced C
	1. Everything is a file!
	2. Implementing abstraction
	2.1. Implementing abstraction with C
	2.2. Libraries

	3. File Descriptors
	3.1. The Shell
	3.1.1. Redirection
	3.1.2. Implementing pipe

	Chapter 2. Binary and Number Representation
	1. Binary — the basis of computing
	1.1. Binary Theory
	1.1.1. Introduction
	1.1.2. The basis of computing
	1.1.3. Bits and Bytes
	1.1.3.1. ASCII
	1.1.3.2. Parity
	1.1.3.3. 16, 32 and 64 bit computers
	1.1.3.4. Kilo, Mega and Giga Bytes
	1.1.3.5. Kilo, Mega and Giga Bits
	1.1.3.6. Conversion

	1.1.4. Boolean Operations
	1.1.4.1. Not
	1.1.4.2. And
	1.1.4.3. Or
	1.1.4.4. Exclusive Or (xor)

	1.1.5. How computers use boolean operations
	1.1.6. Working with binary in C

	1.2. Hexadecimal
	1.3. Practical Implications
	1.3.1. Use of binary in code
	1.3.2. Masking and Flags
	1.3.2.1. Masking
	1.3.2.2. Flags

	2. Types and Number Representation
	2.1. C Standards
	2.1.1. GNU C

	2.2. Types
	2.2.1. 64 bit
	2.2.2. Type qualifiers
	2.2.3. Standard Types
	2.2.4. Types in action

	2.3. Number Representation
	2.3.1. Negative Values
	2.3.1.1. Sign Bit
	2.3.1.2. One's Complement
	2.3.1.3. Two's Complement
	2.3.1.3.1. Sign-extension

	2.3.2. Floating Point
	2.3.2.1. Normalised Values
	2.3.2.1.1. Normalisation Tricks
	2.3.2.2. Bringing it together

	Chapter 3. Computer Architecture
	1. The CPU
	1.1. Branching
	1.2. Cycles
	1.3. Fetch, Decode, Execute, Store
	1.3.1. Looking inside a CPU
	1.3.2. Pipelining
	1.3.2.1. Branch Prediction

	1.3.3. Reordering

	1.4. CISC v RISC
	1.4.1. EPIC

	2. Memory
	2.1. Memory Hierarchy
	2.2. Cache in depth
	2.2.1. Cache Addressing

	3. Peripherals and buses
	3.1. Peripheral Bus concepts
	3.1.1. Interrupts
	3.1.1.1. Saving state
	3.1.1.2. Interrupts v traps and exceptions
	3.1.1.3. Types of interrupts
	3.1.1.4. Non-maskable interrupts

	3.1.2. IO Space

	3.2. DMA
	3.3. Other Buses
	3.3.1. USB

	4. Small to big systems
	4.1. Symmetric Multi-Processing
	4.1.1. Cache Coherency
	4.1.1.1. Cache exclusivity in SMP systems

	4.1.2. Hyperthreading
	4.1.3. Multi Core

	4.2. Clusters
	4.3. Non-Uniform Memory Access
	4.3.1. NUMA Machine Layout
	4.3.2. Cache Coherency
	4.3.3. NUMA Applications

	4.4. Memory ordering, locking and atomic operations
	4.4.1. Processors and memory models
	4.4.2. Locking
	4.4.2.1. Locking difficulties
	4.4.2.2. Locking strategies

	4.4.3. Atomic Operations

	Chapter 4. The Operating System
	1. The role of the operating system
	1.1. Abstraction of hardware
	1.2. Multitasking
	1.3. Standardised Interfaces
	1.4. Security
	1.5. Performance

	2. Operating System Organisation
	2.1. The Kernel
	2.1.1. Monolithic v Microkernels
	2.1.1.1. Modules

	2.1.2. Virtualisation
	2.1.2.1. Covert Channels

	2.2. Userspace

	3. System Calls
	3.1. Overview
	3.1.1. System call numbers
	3.1.2. Arguments
	3.1.3. The trap
	3.1.4. libc

	3.2. Analysing a system call
	3.2.1. PowerPC
	3.2.2. x86 system calls

	4. Privileges
	4.1. Hardware
	4.1.1. Privilege Levels
	4.1.1.1. 386 protection model
	4.1.1.2. Raising Privilege
	4.1.1.3. Fast System Calls

	4.2. Other ways of communicating with the kernel
	4.2.1. ioctl

	4.3. File Systems

	Chapter 5. The Process
	1. What is a process?
	2. Elements of a process
	2.1. Process ID
	2.2. Memory
	2.2.1. Code and Data
	2.2.2. The Stack
	2.2.3. The Heap
	2.2.4. Memory Layout

	2.3. File Descriptors
	2.4. Registers
	2.5. Kernel State
	2.5.1. Process State
	2.5.2. Priority
	2.5.3. Statistics

	3. Process Hierarchy
	4. Fork and Exec
	4.1. Fork
	4.2. Exec
	4.3. How Linux actually handles fork and exec
	4.3.1. clone
	4.3.1.1. Threads
	4.3.1.2. Copy on write

	4.4. The init process
	4.4.1. Zombie example

	5. Context Switching
	6. Scheduling
	6.1. Preemptive v co-operative scheduling
	6.2. Realtime
	6.3. Nice value
	6.4. A brief look at the Linux Scheduler

	7. The Shell
	8. Signals
	8.1. Example

	Chapter 6. Virtual Memory
	1. What Virtual Memory isn't
	2. What virtual memory is
	2.1. 64 bit computing
	2.1.1. Canonical Addresses

	2.2. Using the address space

	3. Pages
	4. Physical Memory
	5. Pages + Frames = Page Tables
	6. Virtual Addresses
	6.1. Page
	6.2. Offset
	6.3. Virtual Address Translation

	7. Consequences of virtual addresses, pages and page tables
	7.1. Individual address spaces
	7.2. Protection
	7.3. Swap
	7.3.1. mmap

	7.4. Sharing memory
	7.5. Disk Cache
	7.5.1. Page Cache

	8. Hardware Support
	8.1. Physical v Virtual Mode
	8.1.1. Issues with segmentation

	8.2. The TLB
	8.2.1. Page Faults
	8.2.1.1. Finding the page table

	8.2.2. Other page related faults

	8.3. TLB Management
	8.3.1. Flushing the TLB
	8.3.2. Hardware v Software loaded TLB

	9. Linux Specifics
	9.1. Address Space Layout
	9.2. Three Level Page Table

	10. Hardware support for virtual memory
	10.1. x86-64
	10.2. Itanium
	10.2.1. Address spaces
	10.2.1.1. Protection Keys

	10.2.2. Itanium Hardware Page-Table Walker
	10.2.2.1. Virtual Linear Page-Table
	10.2.2.2. Virtual Hash Table

	Chapter 7. The Toolchain
	1. Compiled v Interpreted Programs
	1.1. Compiled Programs
	1.2. Interpreted programs
	1.2.1. Virtual Machines

	2. Building an executable
	3. Compiling
	3.1. The process of compiling
	3.1.1. C code

	3.2. Syntax
	3.3. Assembly Generation
	3.3.1. Alignment
	3.3.1.1. Structure Padding
	3.3.1.2. Cache line alignment
	3.3.1.3. Space - Speed Trade off
	3.3.1.4. Making Assumptions
	3.3.1.5. C Idioms with alignment

	3.4. Optimisation
	3.4.1. General Optimising
	3.4.2. Unrolling loops
	3.4.3. Inlining functions
	3.4.4. Branch Prediction

	4. Assembler
	5. Linker
	5.1. Symbols
	5.1.1. Symbols
	5.1.2. Symbol Visibility

	5.2. The linking process

	6. A practical example
	6.1. Compiling
	6.2. Assembly
	6.3. Linking
	6.4. The Executable

	Chapter 8. Behind the process
	1. Review of executable files
	2. Representing executable files
	2.1. Three Standard Sections
	2.2. Binary Format
	2.3. Binary Format History
	2.3.1. a.out
	2.3.2. COFF

	3. ELF
	3.1. ELF File Header
	3.2. Symbols and Relocations
	3.3. Sections and Segments
	3.3.1. Segments
	3.3.2. Sections
	3.3.3. Sections and Segments together

	4. ELF Executables
	5. Libraries
	5.1. Static Libraries
	5.1.1. Inside static libraries
	5.1.2. Static Linking Drawbacks

	5.2. Shared Libraries

	6. Extending ELF concepts
	6.1. Debugging
	6.1.1. Symbols and Debugging Information
	6.1.2. Inside coredumps

	6.2. Custom sections
	6.3. Linker Scripts

	7. ABIs
	7.1. Byte Order
	7.2. Calling Conventions
	7.2.1. Passing parameters
	7.2.2. Function Descriptors

	8. Starting a process
	8.1. Kernel communication to programs
	8.1.1. Kernel Library

	8.2. Starting the program

	Chapter 9. Dynamic Linking
	1. Code Sharing
	1.1. Dynamic Library Details
	1.2. Including libraries in an executable
	1.2.1. Compilation
	1.2.2. Linking

	2. The Dynamic Linker
	2.1. Relocations
	2.1.1. Relocations in action

	2.2. Position Independence

	3. Global Offset Tables
	3.1. The Global Offset Table
	3.1.1. The GOT in action

	4. Libraries
	4.1. The Procedure Lookup Table
	4.1.1. The PLT in action
	4.1.2. Summary

	5. Working with libraries and the linker
	5.1. Library versions
	5.1.1. sonames
	5.1.1.1. How the dynamic linker looks up libraries

	5.2. Finding symbols
	5.2.1. Dynamic Symbol Table
	5.2.2. Symbol Binding
	5.2.2.1. Overriding symbols
	5.2.2.1.1. Weak symbols over time
	5.2.2.2. Specifying binding order
	5.2.2.3. Symbol Versioning

	Glossary

