
Computer Science
from the Bottom Up
Ian Wienand
A PDF version is available at https://www.bottomupcs.com/csbu.pdf. A
EPUB version is available at https://www.bottomupcs.com/csbu.epub
The original souces are available at https://github.com/ianw/
bottomupcs

This work is licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California
94305, USA.

Table of Contents
Introduction . 12

Welcome . 12
Philosophy . 12
Why from the bottom up?. 13
Enabling Technologies 13

Chapter 1. General Unix and Advanced C. 13
1 Everything is a file! . 13
2 Implementing abstraction 15

2.1 Implementing abstraction with C. . 15
2.2 Libraries. 20

3 File Descriptors . 20
3.1 The Shell . 24

3.1.1 Redirection 24
3.1.2 Implementing pipe . . . 25

Chapter 2. Binary and Number Representation 27
1 Binary — the basis of computing 27

1.1 Binary Theory. 27
1.1.1 Introduction 27
1.1.2 The basis of computing .

28
1.1.3 Bits and Bytes. 29

1.1.3.1 ASCII . . . 29
1.1.3.2 Parity . . . 30
1.1.3.3 16, 32 and 64

bit computers . .
Copyright © 2004–2022 Ian Wienand

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://www.bottomupcs.com/csbu.pdf
https://www.bottomupcs.com/csbu.epub
https://github.com/ianw/bottomupcs
https://github.com/ianw/bottomupcs
http://creativecommons.org/licenses/by-sa/3.0/

30
1.1.3.4 Kilo, Mega

and Giga Bytes .
30

1.1.3.5 Kilo, Mega
and Giga Bits . .
32

1.1.3.6 Conversion .
32

1.1.4 Boolean Operations . . 33
1.1.4.1 Not 33
1.1.4.2 And 33
1.1.4.3 Or 33
1.1.4.4 Exclusive Or

(xor) 34
1.1.5 How computers use

boolean operations 34
1.1.6 Working with binary in

C 34
1.2 Hexadecimal. 35
1.3 Practical Implications 37

1.3.1 Use of binary in code . . .
37

1.3.2 Masking and Flags . . . 37
1.3.2.1 Masking . 37
1.3.2.2 Flags 39

2 Types and Number Representation 41
2.1 C Standards 41

2.1.1 GNU C 42
2.2 Types . 42

2.2.1 64 bit 44
2.2.2 Type qualifiers 46
2.2.3 Standard Types 46
2.2.4 Types in action 47

2.3 Number Representation. 50
2.3.1 Negative Values 50

2.3.1.1 Sign Bit . . 50
2.3.1.2 One's

Complement . . .
50

2.3.1.3 Two's
Complement . . .
51

2.3.1.3.1 Sign-
extension
52

2.3.2 Floating Point 52
2.3.2.1 Normalised

Values 56

Computer Science from the Bottom Up

2

2.3.2.1.1 Normalisation
Tricks
56

2.3.2.2 Bringing it
together 58

Chapter 3. Computer Architecture . 64
1 The CPU. 64

1.1 Branching. 65
1.2 Cycles. 65
1.3 Fetch, Decode, Execute, Store 65

1.3.1 Looking inside a CPU . . .
66

1.3.2 Pipelining 68
1.3.2.1 Branch

Prediction . . . 69
1.3.3 Reordering 69

1.4 CISC v RISC 70
1.4.1 EPIC 71

2 Memory . 72
2.1 Memory Hierarchy 72
2.2 Cache in depth 73

2.2.1 Cache Addressing. . . . 76
3 Peripherals and buses . 78

3.1 Peripheral Bus concepts. 78
3.1.1 Interrupts 78

3.1.1.1 Saving
state 79

3.1.1.2 Interrupts v
traps and
exceptions . . 80

3.1.1.3 Types of
interrupts . . . 80

3.1.1.4 Non-maskable
interrupts . . . 81

3.1.2 IO Space 81
3.2 DMA . 81
3.3 Other Buses 82

3.3.1 USB 82
4 Small to big systems . 84

4.1 Symmetric Multi-Processing 84
4.1.1 Cache Coherency 84

4.1.1.1 Cache
exclusivity in
SMP systems . .
86

4.1.2 Hyperthreading 86
4.1.3 Multi Core 87

4.2 Clusters . 87
4.3 Non-Uniform Memory Access 88

Computer Science from the Bottom Up

3

4.3.1 NUMA Machine Layout .
89

4.3.2 Cache Coherency 91
4.3.3 NUMA Applications . . 91

4.4 Memory ordering, locking and atomic
operations 92

4.4.1 Processors and memory
models. 96

4.4.2 Locking. 96
4.4.2.1 Locking

difficulties. . . 96
4.4.2.2 Locking

strategies . . . 97
4.4.3 Atomic Operations . . . 98

Chapter 4. The Operating System . 98
1 The role of the operating system 98

1.1 Abstraction of hardware 98
1.2 Multitasking 99
1.3 Standardised Interfaces 99
1.4 Security . 100
1.5 Performance. 100

2 Operating System Organisation. 101
2.1 The Kernel 102

2.1.1 Monolithic v
Microkernels 103

2.1.1.1 Modules . . .
104

2.1.2 Virtualisation 104
2.1.2.1 Covert

Channels. . . 108
2.2 Userspace. 108

3 System Calls. 109
3.1 Overview 109

3.1.1 System call numbers . . .
109

3.1.2 Arguments 109
3.1.3 The trap 109
3.1.4 libc 110

3.2 Analysing a system call 110
3.2.1 PowerPC 112
3.2.2 x86 system calls 118

4 Privileges . 123
4.1 Hardware 123

4.1.1 Privilege Levels 123
4.1.1.1 386

protection
model 124

4.1.1.2 Raising
Privilege . . . 125

Computer Science from the Bottom Up

4

4.1.1.3 Fast System
Calls 125

4.2 Other ways of communicating with the
kernel . 129

4.2.1 ioctl. 129
4.3 File Systems 129

Chapter 5. The Process . 129
1 What is a process? . 129
2 Elements of a process 130

2.1 Process ID 130
2.2 Memory . 130

2.2.1 Code and Data 131
2.2.2 The Stack 131
2.2.3 The Heap 136
2.2.4 Memory Layout 137

2.3 File Descriptors 138
2.4 Registers 138
2.5 Kernel State 138

2.5.1 Process State 139
2.5.2 Priority 139
2.5.3 Statistics. 139

3 Process Hierarchy . 139
4 Fork and Exec . 140

4.1 Fork . 140
4.2 Exec . 141
4.3 How Linux actually handles fork and

exec . 141
4.3.1 clone 141

4.3.1.1 Threads. . . .
141

4.3.1.2 Copy on
write 143

4.4 The init process 144
4.4.1 Zombie example 145

5 Context Switching . 146
6 Scheduling . 146

6.1 Preemptive v co-operative
scheduling 146

6.2 Realtime . 147
6.3 Nice value 147
6.4 A brief look at the Linux Scheduler . .

148
7 The Shell . 149
8 Signals . 150

8.1 Example . 151
Chapter 6. Virtual Memory . 154

1 What Virtual Memory isn't. 154
2 What virtual memory is 154

2.1 64 bit computing 155

Computer Science from the Bottom Up

5

2.1.1 Canonical Addresses . . .
155

2.2 Using the address space 156
3 Pages . 157
4 Physical Memory . 158
5 Pages + Frames = Page Tables 158
6 Virtual Addresses. 159

6.1 Page . 159
6.2 Offset . 159
6.3 Virtual Address Translation 159

7 Consequences of virtual addresses, pages and
page tables . 161

7.1 Individual address spaces 161
7.2 Protection. 161
7.3 Swap. 162

7.3.1 mmap 163
7.4 Sharing memory. 163
7.5 Disk Cache 163

7.5.1 Page Cache. 164
8 Hardware Support . 164

8.1 Physical v Virtual Mode 164
8.1.1 Issues with

segmentation. 165
8.2 The TLB . 166

8.2.1 Page Faults 166
8.2.1.1 Finding the

page table. . 167
8.2.2 Other page related

faults 167
8.3 TLB Management. 168

8.3.1 Flushing the TLB . . . 168
8.3.2 Hardware v Software

loaded TLB 169
9 Linux Specifics . 170

9.1 Address Space Layout 170
9.2 Three Level Page Table 171

10 Hardware support for virtual memory. 173
10.1 x86-64 . 173
10.2 Itanium. 173

10.2.1 Address spaces. . . . 174
10.2.1.1 Protection

Keys 176
10.2.2 Itanium Hardware Page-

Table Walker 176
10.2.2.1 Virtual

Linear Page-
Table. 177

10.2.2.2 Virtual Hash
Table. 181

Computer Science from the Bottom Up

6

Chapter 7. The Toolchain. 182
1 Compiled v Interpreted Programs 182

1.1 Compiled Programs 182
1.2 Interpreted programs 182

1.2.1 Virtual Machines . . . 183
2 Building an executable 183
3 Compiling. 184

3.1 The process of compiling 184
3.1.1 C code. 184

3.2 Syntax . 184
3.3 Assembly Generation 185

3.3.1 Alignment 185
3.3.1.1 Structure

Padding. . . . 186
3.3.1.2 Cache line

alignment . . 188
3.3.1.3 Space - Speed

Trade off . . . 189
3.3.1.4 Making

Assumptions . . .
189

3.3.1.5 C Idioms with
alignment . . 191

3.4 Optimisation. 193
3.4.1 General Optimising . 193
3.4.2 Unrolling loops 193
3.4.3 Inlining functions . . . 193
3.4.4 Branch Prediction. . . 193

4 Assembler . 194
5 Linker. 194

5.1 Symbols . 195
5.1.1 Symbols 195
5.1.2 Symbol Visibility. . . . 195

5.2 The linking process 196
6 A practical example . 196

6.1 Compiling 199
6.2 Assembly 202
6.3 Linking . 204
6.4 The Executable. 206

Chapter 8. Behind the process . 212
1 Review of executable files 212
2 Representing executable files 212

2.1 Three Standard Sections 212
2.2 Binary Format 213
2.3 Binary Format History 213

2.3.1 a.out 213
2.3.2 COFF 214

3 ELF. 214
3.1 ELF File Header. 215

Computer Science from the Bottom Up

7

3.2 Symbols and Relocations 219
3.3 Sections and Segments 220

3.3.1 Segments 220
3.3.2 Sections 222
3.3.3 Sections and Segments

together. 228
4 ELF Executables . 229
5 Libraries. 232

5.1 Static Libraries. 232
5.1.1 Inside static libraries . . .

233
5.1.2 Static Linking

Drawbacks 236
5.2 Shared Libraries 236

6 Extending ELF concepts 236
6.1 Debugging 236

6.1.1 Symbols and Debugging
Information 239

6.1.2 Inside coredumps . . . 240
6.2 Custom sections 245
6.3 Linker Scripts. 250

7 ABIs . 252
7.1 Byte Order 252
7.2 Calling Conventions 252

7.2.1 Passing parameters . 252
7.2.2 Function Descriptors . . .

252
8 Starting a process . 253

8.1 Kernel communication to programs. .
254

8.1.1 Kernel Library 254
8.2 Starting the program 255

Chapter 9. Dynamic Linking . 263
1 Code Sharing . 263

1.1 Dynamic Library Details 264
1.2 Including libraries in an executable. .

264
1.2.1 Compilation 264
1.2.2 Linking 265

2 The Dynamic Linker. 266
2.1 Relocations. 268

2.1.1 Relocations in action . . .
269

2.2 Position Independence 271
3 Global Offset Tables . 271

3.1 The Global Offset Table 271
3.1.1 The GOT in action . . 274

4 Libraries. 278
4.1 The Procedure Lookup Table 278

Computer Science from the Bottom Up

8

4.1.1 The PLT in action . . . 279
4.1.2 Summary 293

5 Working with libraries and the linker 293
5.1 Library versions 294

5.1.1 sonames 294
5.1.1.1 How the

dynamic linker
looks up
libraries . . . 296

5.2 Finding symbols 297
5.2.1 Dynamic Symbol Table . .

297
5.2.2 Symbol Binding 298

5.2.2.1 Overriding
symbols. . . . 301

5.2.2.1.1 Weak
symbols
over
time .
304

5.2.2.2 Specifying
binding order . .
304

5.2.2.3 Symbol
Versioning. . 305

Glossary . 308

List of Figures
1.1 Abstraction . 15
3.1 Default Unix Files . 21
3.2 Abstraction . 22
3.1.2.1 A pipe in action . 26
1.3.2.1.1 Masking . 38
2.2.1 Types . 43
1.1 The CPU. 64
1.3.1.1 Inside the CPU. 67
1.3.3.1 Reorder buffer example. 69
2.2.1 Cache Associativity. 74
2.2.1.1 Cache tags . 77
3.1.1.1 Overview of handling an interrupt 79
3.3.1.1 Overview of a UHCI controller operation 83
4.3.1.1 A Hypercube . 90
4.4.1 Acquire and Release semantics 95
2.1 The Operating System . 102
2.1.2.1 The Operating System . 106
4.1.1.1 Rings . 124
4.1.1.3.1 x86 Segmentation Addressing 126
4.1.1.3.2 x86 segments . 127
2.1 The Elements of a Process. 130

Computer Science from the Bottom Up

9

2.2.2.1 The Stack . 132
2.2.4.1 Process memory layout . 137
4.3.1.1.1 Threads. 142
6.4.1 The O(1) scheduler . 148
2.1.1.1 Illustration of canonical addresses 156
3.1 Virtual memory pages . 157
6.3.1 Virtual Address Translation . 160
8.1.1.1 Segmentation. 166
9.1.1 Linux address space layout . 171
9.2.1 Linux Three Level Page Table. 172
10.2.1.1 Illustration Itanium regions and protection keys . 174
10.2.1.2 Illustration of Itanium TLB translation 175
10.2.2.1.1 Illustration of a hierarchical page-table 178
10.2.2.1.2 Itanium short-format VHPT implementation . . . 179
10.2.2.1.3 Itanium PTE entry formats 180
3.3.1.1 Alignment . 185
3.3.1.1.1 Alignment . 188
3.1 ELF Overview . 215
3.1.1 Memory access via the GOT . 273
5.1.1.1 sonames . 296

List of Tables
3.1 Standard Files Provided by Unix 21
3.1.1.1 Standard Shell Redirection Facilities 24
1.1.1.1 Binary . 27
1.1.1.2 203 in base 10 . 28
1.1.1.3 203 in base 2 . 28
1.1.3.4.1 Base 2 and 10 factors related to bytes 31
1.1.3.6.1 Convert 203 to binary. 32
1.1.4.1.1 Truth table for not . 33
1.1.4.2.1 Truth table for and . 33
1.1.4.3.1 Truth table for or . 34
1.1.4.4.1 Truth table for xor . 34
1.1.6.1 Boolean operations in C. 35
1.2.1 Hexadecimal, Binary and Decimal 35
1.2.2 Convert 203 to hexadecimal . 36
2.2.1 Standard Integer Types and Sizes 44
2.2.1.1 Standard Scalar Types and Sizes 45
2.3.1.2.1 One's Complement Addition 50
2.3.1.3.1 Two's Complement Addition 51
2.3.2.1 IEEE Floating Point . 53
2.3.2.2 Scientific Notation for 1.98765x10^6 53
2.3.2.3 Significands in binary . 53
2.3.2.1.1 Example of normalising 0.375 56
2.1.1 Memory Hierarchy . 72
2.1.1 Relocation Example . 268
5.2.1.1 ELF symbol fields . 298

List of Examples

Computer Science from the Bottom Up

10

2.1.1 Abstraction with function pointers 16
2.1.2 Abstraction in include/linux/virtio.h 19
3.1 Example of major and minor numbers 23
1.3.2.1.1 Using masks . 39
1.3.2.2.1 Using flags . 40
2.2.4.1 Example of warnings when types are not matched. . 48
2.3.2.1 Floats versus Doubles . 55
2.3.2.1.1.1 Program to find first set bit 58
2.3.2.2.1 Examining Floats . 59
2.3.2.2.2 Analysis of 8.45 . 63
4.4.1 Memory Ordering . 93
3.2.1 getpid() example. 111
3.2.1.1 PowerPC system call example 113
3.2.2.1 x86 system call example . 119
2.2.2.1 Stack pointer example . 135
3.1 pstree example. 140
4.4.1.1 Zombie example process . 145
8.1.1 Signals Example . 152
3.3.1.1.1 Struct padding example . 187
3.3.1.4.1 Stack alignment example 190
3.3.1.5.1 Page alignment manipulations 192
6.1 Hello World . 198
6.2 Function Example . 199
6.1.1 Compilation Example . 200
6.2.1 Assembly Example . 202
6.2.2 Readelf Example . 203
6.3.1 Linking Example . 205
6.4.1 Executable Example . 207
3.1.1 The ELF Header . 216
3.1.2 The ELF Header, as shown by readelf 217
3.1.3 Inspecting the ELF magic number 218
3.1.4 Investigating the entry point 219
3.3.1.1 The Program Header . 221
3.3.2.1 Sections . 223
3.3.2.2 Sections . 224
3.3.2.3 Sections readelf output . 225
3.3.3.1 Sections and Segments . 228
4.1 Segments of an executable file 231
5.1.1.1 Creating and using a static library 234
6.1.1 Example of creating a core dump and using it with gdb .

238
6.1.1.1 Example of stripping debugging information into

separate files using objcopy . 240
6.1.2.1 Example of using readelf and eu-readelf to examine a

coredump. 241
6.2.1 Example of modinfo output . 246
6.2.2 Putting module info into sections 248
6.2.3 Module symbols in .modinfo sections 250
6.3.1 The default linker script . 251

Computer Science from the Bottom Up

11

8.2.1 Disassembley of program startup. 256
8.2.2 Constructors and Destructors 259
1.2.2.1 Specifying Dynamic Libraries 265
1.2.2.2 Looking at dynamic libraries 266
2.1 Checking the program interpreter 267
2.1.1 Relocation as defined by ELF 268
2.1.1.1 Specifying Dynamic Libraries 270
3.1.1.1 Using the GOT . 275
3.1.1.2 Relocations against the GOT 278
4.1.1.1 Hello World PLT example . 280
4.1.1.2 Hello world main() . 281
4.1.1.3 Hello world sections . 282
4.1.1.4 Hello world PLT . 285
4.1.1.5 Hello world GOT . 287
4.1.1.6 Dynamic Segment . 289
4.1.1.7 Code in the dynamic linker for setting up special values

(from libc sysdeps/ia64/dl-machine.h). 291
5.2.1.1 Symbol definition from ELF. 298
5.2.2.1 Examples of symbol bindings 300
5.2.2.1.1 Example of LD_PRELOAD . 303
5.2.2.3.1 Example of symbol versioning 306

Introduction
Welcome
Welcome to Computer Science from the Bottom Up

Philosophy
In a nutshell, what you are reading is intended to be a shop class for
computer science. Young computer science students are taught to
"drive" the computer; but where do you go to learn what is under the
hood? Trying to understand the operating system is unfortunately not
as easy as just opening the bonnet. The current Linux kernel runs into
the millions of lines of code, add to that the other critical parts of a
modern operating system (the compiler, assembler and system
libraries) and your code base becomes unimaginable. Further still,
add a University level operating systems course (or four), some good
reference manuals, two or three years of C experience and, just
maybe, you might be able to figure out where to start looking to make
sense of it all.

To keep with the car analogy, the prospective student is starting out

Computer Science from the Bottom Up

12

trying to work on a Formula One engine without ever knowing how a
two stroke motor operates. During their shop class the student should
pull apart, twist, turn and put back together that two stroke motor,
and consequentially have a pretty good framework for understanding
just how the Formula One engine works. Nobody will expect them to
be a Formula One engineer, but they are well on their way!

Why from the bottom up?
Not everyone wants to attend shop class. Most people only want to
drive the car, not know how to build one from scratch. Obviously any
general computing curriculum has to take this into account else it
won't be relevant to its students. So computer science is taught from
the "top down"; applications, high level programming, software
design and development theory, possibly data structures. Students
will probably be exposed to binary, hopefully binary logic, possibly
even some low level concepts such as registers, opcodes and the like
at a superficial level.

This book aims to move in completely the opposite direction, working
from operating systems fundamentals through to how those
applications are complied and executed.

Enabling Technologies
This book is only possible thanks to the development of Open Source
technologies. Before Linux it was like taking a shop course with a car
that had its bonnet welded shut; today we are in a position to open
that bonnet, poke around with the insides and, better still, take that
engine and use it to do whatever we want.

Chapter 1. General Unix and
Advanced C
1 Everything is a file!
An often-quoted tenet of UNIX-like systems such as Linux or BSD is
everything is a file.

Imagine a file in the context of something familiar like a word
processor. There are two fundamental operations we could use on this
imaginary word processing file:

Computer Science from the Bottom Up

13

1. Read it (existing saved data from the word processor).

2. Write to it (new data from the user).

Consider some of the common things attached to a computer and how
they relate to our fundamental file operations:

1. The screen

2. The keyboard

3. A printer

4. A CD-ROM

The screen and printer are both like a write-only file, but instead of
being stored as bits on a disk the information is displayed as dots on a
screen or lines on a page. The keyboard is like a read only file, with
the data coming from keystrokes provided by the user. The CD-ROM
is similar, but rather than randomly coming from the user the data is
stored directly on the disk.

Thus the concept of a file is a good abstraction of either a sink for, or
source of, data. As such it is an excellent abstraction of all the devices
one might attach to the computer. This realisation is the great power
of UNIX and is evident across the design of the entire platform. It is
one of the fundamental roles of the operating system to provide this
abstraction of the hardware to the programmer.

It is probably not too much of a stretch to say abstraction is the
primary concept that underpins all modern computing. No one person
can understand everything from designing a modern user-interface to
the internal workings of a modern CPU, much less build it all
themselves. To programmers, abstractions are the common language
that allows us to collaborate and invent.

Learning to navigate across abstractions gives one greater insight
into how to use the abstractions in the best and most innovative ways.
In this book, we are concerned with abstractions at the lowest layers;
between applications and the operating system and the operating
system and hardware. Many more layers lie above this, each worthy
of their own books. As these chapters progress, you will hopefully
gain some insight into the abstractions presented by a modern
operating system.

Computer Science from the Bottom Up

14

Spot the difference?
Figure 1.1 Abstraction

2 Implementing abstraction
In general, abstraction is implemented by what is generically termed
an Application Programming Interface (API). API is a somewhat
nebulous term that means different things in the context of various
programming endeavours. Fundamentally, a programmer designs a
set of functions and documents their interface and functionality with
the principle that the actual implementation providing the API is
opaque.

For example, many large web applications provide an API accessible
via HTTP. Accessing data via this method surely triggers many
complicated series of remote procedure calls, database queries and
data transfers, all of which are opaque to the end user who simply
receives the contracted data.

Those familiar with object-oriented languages such as Java, Python or
C++ would be familiar with the abstraction provided by classes.
Methods provide the interface to the class, but abstract the
implementation.

2.1 Implementing abstraction with C
A common method used in the Linux kernel and other large C code
bases, which lack a built-in concept of object-orientation, is function
pointers. Learning to read this idiom is key to navigating most large C
code bases. By understanding how to read the abstractions provided
within the code an understanding of internal API designs can be built.

Computer Science from the Bottom Up

15

1 #include <stdio.h>

/* The API to implement */
struct greet_api

5 {
int (*say_hello)(char *name);
int (*say_goodbye)(void);

};

10 /* Our implementation of the hello function */
int say_hello_fn(char *name)
{

printf("Hello %s\n", name);
return 0;

15 }

/* Our implementation of the goodbye function */
int say_goodbye_fn(void)
{

20 printf("Goodbye\n");
return 0;

}

/* A struct implementing the API */
25 struct greet_api greet_api =

{
.say_hello = say_hello_fn,
.say_goodbye = say_goodbye_fn

};
30

Computer Science from the Bottom Up

16

/* main() doesn't need to know anything about how the
* say_hello/goodbye works, it just knows that it does */

int main(int argc, char *argv[])
{

35 greet_api.say_hello(argv[1]);
greet_api.say_goodbye();

printf("%p, %p, %p\n", greet_api.say_hello, say_hello_fn, &say_hello_fn);

40 exit(0);
}

Example 2.1.1 Abstraction with function pointers

Code such as the above is the simplest example of constructs used
repeatedly throughout the Linux Kernel and other C programs. Let's
have a look at some specific elements.

We start out with a structure that defines the API (struct greet_api).
The functions whose names are encased in parentheses with a pointer
marker describe a function pointer1. The function pointer describes
the prototype of the function it must point to; pointing it at a function
without the correct return type or parameters will generate a
compiler warning at least; if left in code will likely lead to incorrect
operation or crashes.

We then have our implementation of the API. Often for more complex
functionality you will see an idiom where API implementation
functions will only be a wrapper around other functions that are
conventionally prepended with one or or two underscores2 (i.e.
say_hello_fn() would call another function _say_hello_function()).

This has several uses; generally it relates to having simpler and
smaller parts of the API (marshalling or checking arguments, for
example) separate from more complex implementation, which often
eases the path to significant changes in the internal workings whilst

1. Often you will see that the names of the parameters are omitted, and
only the type of the parameter is specified. This allows the implementer
to specify their own parameter names avoiding warnings from the
compiler.

2. A double-underscore function __foo may conversationally be referred
to as "dunder foo".

Computer Science from the Bottom Up

17

ensuring the API remains constant. Our implementation is very
simple, however, and doesn't even need its own support functions. In
various projects, single-, double- or even triple-underscore function
prefixes will mean different things, but universally it is a visual
warning that the function is not supposed to be called directly from
"beyond" the API.

Second to last, we fill out the function pointers in struct greet_api
greet_api . The name of the function is a pointer; therefore there is no
need to take the address of the function (i.e. &say_hello_fn).

Finally we can call the API functions through the structure in main .

You will see this idiom constantly when navigating the source code.
The tiny example below is taken from include/linux/virtio.h in the
Linux kernel source to illustrate:

Computer Science from the Bottom Up

18

1 /**
* virtio_driver - operations for a virtio I/O driver
* @driver: underlying device driver (populate name and owner).
* @id_table: the ids serviced by this driver.

5 * @feature_table: an array of feature numbers supported by this driver.
* @feature_table_size: number of entries in the feature table array.
* @probe: the function to call when a device is found. Returns 0 or -errno.
* @remove: the function to call when a device is removed.
* @config_changed: optional function to call when the device configuration

10 * changes; may be called in interrupt context.
*/

struct virtio_driver {
struct device_driver driver;
const struct virtio_device_id *id_table;

15 const unsigned int *feature_table;
unsigned int feature_table_size;
int (*probe)(struct virtio_device *dev);
void (*scan)(struct virtio_device *dev);
void (*remove)(struct virtio_device *dev);

20 void (*config_changed)(struct virtio_device *dev);
#ifdef CONFIG_PM

int (*freeze)(struct virtio_device *dev);
int (*restore)(struct virtio_device *dev);

#endif
25 };

Example 2.1.2 Abstraction in include/linux/virtio.h

It's only necessary to vaguely understand that this structure is a
description of a virtual I/O device. We can see the user of this API (the
device driver author) is expected to provide a number of functions
that will be called under various conditions during system operation
(when probing for new hardware, when hardware is removed, etc.). It
also contains a range of data; structures which should be filled with

Computer Science from the Bottom Up

19

relevant data.

Starting with descriptors like this is usually the easiest way to begin
understanding the various layers of kernel code.

2.2 Libraries
Libraries have two roles which illustrate abstraction.

• Allow programmers to reuse commonly accessed code.

• Act as a black box implementing functionality for the
programmer.

For example, a library implementing access to the raw data in JPEG
files has both the advantage that the many programs that wish to
access image files can all use the same library and the programmers
building these programs do not need to worry about the exact details
of the JPEG file format, but can concentrate their efforts on what their
program wants to do with the image.

The standard library of a UNIX platform is generically referred to as
libc . It provides the basic interface to the system: fundamental calls

such as read() , write() and printf() . This API is described in its
entirety by a specification called POSIX . It is freely available online
and describes the many calls that make up the standard UNIX API.

Most UNIX platforms broadly follow the POSIX standard, though
often differ in small but sometimes important ways (hence the
complexity of the various GNU autotools, which often try to abstract
away these differences for you). Linux has many interfaces that are
not specified by POSIX; writing applications that use them exclusively
will make your application less portable.

Libraries are a fundamental abstraction with many details. Later
chapters will describe how libraries work in much greater detail.

3 File Descriptors
One of the first things a UNIX programmer learns is that every
running program starts with three files already opened:

Computer Science from the Bottom Up

20

Table 3.1 Standard Files Provided by Unix
Descriptive
Name

Short
Name

File
Number Description

Standard In stdin 0 Input from the keyboard
Standard Out stdout 1 Output to the console

Standard Error stderr 2 Error output to the
console

Standard Input
Standard Output
Standard Error

Default Unix Files

Figure 3.1 Default Unix Files

This raises the question of what an open file represents. The value
returned by an open call is termed a file descriptor and is essentially
an index into an array of open files kept by the kernel.

Computer Science from the Bottom Up

21

0

1

2

3

MAX_FD

Device Layer

/dev/input

/dev/tty

/dev/sr0

Opening the file

associates a descriptor

with the associated device

int fd = open("/dev/sr0");

with the kernel

which gives them a file

Devices register

int ret = read(fd, &input, count);

File Descriptors

12

Further references

to the descriptor

are routed to the device
3

File descriptors are an index into a file descriptor table stored by the
kernel. The kernel creates a file descriptor in response to an open call and
associates the file descriptor with some abstraction of an underlying file-
like object, be that an actual hardware device, or a file system or
something else entirely. Consequently a process's read or write calls that
reference that file descriptor are routed to the correct place by the kernel
to ultimately do something useful.

Figure 3.2 Abstraction

Computer Science from the Bottom Up

22

In short, the file descriptor is the gateway into the kernel's
abstractions of underlying hardware. An overall view of the
abstraction for physical-devices is shown in Figure 3.2, Abstraction.

Starting at the lowest level, the operating system requires a
programmer to create a device driver to be able to communicate with
a hardware device. This device driver is written to an API provided by
the kernel just like in Example 2.1.2, Abstraction in include/linux/
virtio.h ; the device driver will provide a range of functions which are
called by the kernel in response to various requirements. In the
simplified example above, we can see the drivers provide a read and
write function that will be called in response to the analogous

operations on the file descriptor. The device driver knows how to
convert these generic requests into specific requests or commands
for a particular device.

To provide the abstraction to user-space, the kernel provides a file-
interface via what is generically termed a device layer. Physical
devices on the host are represented by a file in a special file system
such as /dev . In UNIX-like systems, so-called device-nodes have what
are termed a major and a minor number, which allow the kernel to
associate particular nodes with their underlying driver. These can be
identified via ls as illustrated in Example 3.1, Example of major and
minor numbers.

$ ls -l /dev/null /dev/zero /dev/tty
crw-rw-rw- 1 root root 1, 3 Aug 26 13:12 /dev/null
crw-rw-rw- 1 root root 5, 0 Sep 2 15:06 /dev/tty
crw-rw-rw- 1 root root 1, 5 Aug 26 13:12 /dev/zero

Example 3.1 Example of major and minor numbers

This brings us to the file descriptor, which is the handle user-space
uses to talk to the underlying device. In a broad sense, what happens
when a file is open ed is that the kernel is using the path information
to map the file descriptor with something that provides an
appropriate read and write , etc., API. When this open is for a device
(/dev/sr0 above), the major and minor number of the opened device
node provides the information the kernel needs to find the correct
device driver and complete the mapping. The kernel will then know
how to route further calls such as read to the underlying functions
provided by the device driver.

A non-device file operates similarly, although there are more layers in
between. The abstraction here is the mount point; mounting a file

Computer Science from the Bottom Up

23

system has the dual purpose of setting up a mapping so the file
system knows the underlying device that provides the storage and the
kernel knows that files opened under that mount-point should be
directed to the file system driver. Like device drivers, file systems are
written to a particular generic file system API provided by the kernel.

There are indeed many other layers that complicate the picture in
real-life. For example, the kernel will go to great efforts to cache as
much data from disks as possible in otherwise-free memory; this
provides many speed advantages. It will also try to organise device
access in the most efficient ways possible; for example trying to order
disk-access to ensure data stored physically close together is
retrieved together, even if the requests did not arrive in sequential
order. Further, many devices are of a more generic class such as USB
or SCSI devices which provide their own abstraction layers to write
to. Thus, rather than writing directly to devices, file systems will go
through these many layers. Understanding the kernel is to
understand how these many APIs interrelate and coexist.

3.1 The Shell
The shell is the gateway to interacting with the operating system. Be
it bash , zsh , csh or any of the many other shells, they all
fundamentally have only one major task — to allow you to execute
programs (you will begin to understand how the shell actually does
this when we talk about some of the internals of the operating system
later).

But shells do much more than allow you to simply execute a program.
They have powerful abilities to redirect files, allow you to execute
multiple programs simultaneously and script complete programs.
These all come back to the everything is a file idiom.

3.1.1 Redirection
Often we do not want the standard file descriptors mentioned in
Section 3, File Descriptors to point to their default places. For
example, you may wish to capture all the output of a program into a
file on disk or, alternatively, have it read its commands from a file you
prepared earlier. Another useful task might like to pass the output of
one program to the input of another. With the operating system, the
shell facilitates all this and more.

Table 3.1.1.1 Standard Shell Redirection Facilities
Name Command Description Example
Redirect > Take all output from standard out ls >

Computer Science from the Bottom Up

24

Name Command Description Example

to a file filename
and place it into filename . Note
using >> will append to the file,
rather than overwrite it.

filename

Read
from a
file

<
filename

Copy all data from the file to the
standard input of the program

echo <
filename

Pipe program1 |
program2

Take everything from standard out of
program1 and pass it to standard

input of program2

ls |
more

3.1.2 Implementing pipe

The implementation of ls | more is just another example of the
power of abstraction. What fundamentally happens here is that
instead of associating the file descriptor for the standard-output with
some sort of underlying device (such as the console, for output to the
terminal), the descriptor is pointed to an in-memory buffer provided
by the kernel commonly termed a pipe . The trick here is that another
process can associate its standard input with the other side of this
same buffer and effectively consume the output of the other process.
This is illustrated in Figure 3.1.2.1, A pipe in action.

Computer Science from the Bottom Up

25

Buffer

File Descriptors

0

1

2

3

MAX_FD

File Descriptors

$ ls | more

write()
read()

Kernel

User

pipe

ls

The pipe is an in-memory buffer that connects two processes together. file
descriptors point to the pipe object, which buffers data sent to it (via a
write) to be drained (via a read).

Figure 3.1.2.1 A pipe in action

Writes to the pipe are stored by the kernel until a corresponding read
from the other side drains the buffer. This is a very powerful concept
and is one of the fundamental forms of inter-process communication
or IPC in UNIX-like operating systems. The pipe allows more than just
a data transfer; it can act as a signaling channel. If a process read s
an empty pipe, it will by default block or be put into hibernation until
there is some data available (this is discussed in much greater depth
in Chapter 5, The Process). Thus two processes may use a pipe to
communicate that some action has been taken just by writing a byte
of data; rather than the actual data being important, the mere
presence of any data in the pipe can signal a message. Say for
example one process requests that another print a file — something
that will take some time. The two processes may set up a pipe
between themselves where the requesting process does a read on
the empty pipe; being empty, that call blocks and the process does not
continue. Once the print is done, the other process can write a
message into the pipe, which effectively wakes up the requesting

Computer Science from the Bottom Up

26

process and signals the work is done.

Allowing processes to pass data between each other like this springs
another common UNIX idiom of small tools doing one particular
thing. Chaining these small tools gives flexibility that a single
monolithic tool often can not.

Chapter 2. Binary and Number
Representation
1 Binary — the basis of
computing
1.1 Binary Theory
1.1.1 Introduction
Binary is a base-2 number system that uses two mutually exclusive
states to represent information. A binary number is made up of
elements called bits where each bit can be in one of the two possible
states. Generally, we represent them with the numerals 1 and 0 . We
also talk about them being true and false. Electrically, the two states
might be represented by high and low voltages or some form of
switch turned on or off.

We build binary numbers the same way we build numbers in our
traditional base 10 system. However, instead of a one's column, a 10's
column, a 100's column (and so on) we have a one's column, a two's
columns, a four's column, an eight's column, and so on, as illustrated
below.

Table 1.1.1.1 Binary

2... 26 25 24 23 22 21 20

... 64 32 16 8 4 2 1

For example, to represent the number 203 in base 10, we know we
place a 3 in the 1's column, a 0 in the 10's column and a 2 in the
100's column. This is expressed with exponents in the table below.

Computer Science from the Bottom Up

27

Table 1.1.1.2 203 in base 10

102 101 100

2 0 3

Or, in other words, 2 × 102 + 3 × 100 = 200 + 3 = 203. To represent
the same thing in binary, we would have the following table.

Table 1.1.1.3 203 in base 2

27 26 25 24 23 22 21 20

1 1 0 0 1 0 1 1

That equates to 27 + 26 + 23+21 + 20 = 128 + 64 + 8 + 2 + 1 = 203.

1.1.2 The basis of computing
You may be wondering how a simple number is the basis of all the
amazing things a computer can do. Believe it or not, it is! The
processor in your computer has a complex but ultimately limited set
of instructions it can perform on values such as addition,
multiplication, etc. Essentially, each of these instructions is assigned
a number so that an entire program (add this to that, multiply by that,
divide by this and so on) can be represented by a just a stream of
numbers. For example, if the processor knows operation 2 is
addition, then 252 could mean "add 5 and 2 and store the output
somewhere". The reality is of course much more complicated (see
Chapter 3, Computer Architecture) but, in a nutshell, this is what a
computer is.

In the days of punch-cards, one could see with their eye the one's and
zero's that make up the program stream by looking at the holes
present on the card. Of course this moved to being stored via the
polarity of small magnetic particles rather quickly (tapes, disks) and
onto the point today that we can carry unimaginable amounts of data
in our pocket.

Translating these numbers to something useful to humans is what
makes a computer so useful. For example, screens are made up of
millions of discrete pixels, each too small for the human eye to
distinguish but combining to make a complete image. Generally each
pixel has a certain red, green and blue component that makes up its
display color. Of course, these values can be represented by numbers,
which of course can be represented by binary! Thus any image can be
broken up into millions of individual dots, each dot represented by a
tuple of three values representing the red, green and blue values for
the pixel. Thus given a long string of such numbers, formatted

Computer Science from the Bottom Up

28

correctly, the video hardware in your computer can convert those
numbers to electrical signals to turn on and off individual pixels and
hence display an image.

As you read on, we will build up the entire modern computing
environment from this basic building block; from the bottom-up if you
will!

1.1.3 Bits and Bytes
As discussed above, we can essentially choose to represent anything
by a number, which can be converted to binary and operated on by
the computer. For example, to represent all the letters of the alphabet
we would need at least enough different combinations to represent all
the lower case letters, the upper case letters, numbers and
punctuation, plus a few extras. Adding this up means we need
probably around 80 different combinations.

If we have two bits, we can represent four possible unique
combinations (00 01 10 11). If we have three bits, we can represent 8
different combinations. In general, with n bits we can represent 2n

unique combinations.

8 bits gives us 28 = 256 unique representations, more than enough
for our alphabet combinations. We call a group of 8 bits a byte. Guess
how big a C char variable is? One byte.

1.1.3.1 ASCII

Given that a byte can represent any of the values 0 through 255,
anyone could arbitrarily make up a mapping between characters and
numbers. For example, a video card manufacturer could decide that
1 represents A , so when value 1 is sent to the video card it displays

a capital 'A' on the screen. A printer manufacturer might decide for
some obscure reason that 1 represented a lower-case 'z', meaning
that complex conversions would be required to display and print the
same thing.

To avoid this happening, the American Standard Code for Information
Interchange or ASCII was invented. This is a 7-bit code, meaning
there are 27 or 128 available codes.

The range of codes is divided up into two major parts; the non-
printable and the printable. Printable characters are things like
characters (upper and lower case), numbers and punctuation. Non-
printable codes are for control, and do things like make a carriage-
return, ring the terminal bell or the special NULL code which
represents nothing at all.

Computer Science from the Bottom Up

29

127 unique characters is sufficient for American English, but becomes
very restrictive when one wants to represent characters common in
other languages, especially Asian languages which can have many
thousands of unique characters.

To alleviate this, modern systems are moving away from ASCII to
Unicode, which can use up to 4 bytes to represent a character, giving
much more room!

1.1.3.2 Parity

ASCII, being only a 7-bit code, leaves one bit of the byte spare. This
can be used to implement parity which is a simple form of error
checking. Consider a computer using punch-cards for input, where a
hole represents 1 and no hole represents 0. Any inadvertent covering
of a hole will cause an incorrect value to be read, causing undefined
behaviour.

Parity allows a simple check of the bits of a byte to ensure they were
read correctly. We can implement either odd or even parity by using
the extra bit as a parity bit.

In odd parity, if the number of 1's in the 7 bits of information is odd,
the parity bit is set, otherwise it is not set. Even parity is the opposite;
if the number of 1's is even the parity bit is set to 1.

In this way, the flipping of one bit will case a parity error, which can
be detected.

XXX more about error correcting

1.1.3.3 16, 32 and 64 bit computers

Numbers do not fit into bytes; hopefully your bank balance in dollars
will need more range than can fit into one byte! All most all general-
purpose architectures are at least 32 bit computers. This means that
their internal registers are 32-bits (or 4-bytes) wide, and that
operations generally work on 32-bit values. We refer to 4 bytes as a
word; this is analogous to language where letters (bits) make up
words in a sentence, except in computing every word has the same
size! The size of a C int variable is 32 bits. Modern architectures are
64 bits, which doubles the size the processor works with to 8 bytes.

1.1.3.4 Kilo, Mega and Giga Bytes

Computers deal with a lot of bytes; that's what makes them so
powerful! We need a way to talk about large numbers of bytes, and a
natural way is to use the "International System of Units" (SI) prefixes
as used in most other scientific areas. So for example, kilo refers to

Computer Science from the Bottom Up

30

103 or 1000 units, as in a kilogram has 1000 grams.

1000 is a nice round number in base 10, but in binary it is 1111101000
which is not a particularly "round" number. However, 1024 (or 210) is
a round number — (10000000000 — and happens to be quite close to
the base 10 meaning value of "kilo" (1000 as opposed to 1024). Thus
1024 bytes naturally became known as a kilobyte. The next SI unit is
"mega" for 106 and the prefixes continue upwards by 103

(corresponding to the usual grouping of three digits when writing
large numbers). As it happens, 220 is again close to the SI base 10
definition for mega; 1048576 as opposed to 1000000. Increasing the
base 2 units by powers of 10 remains functionally close to the SI base
10 value, although each increasing factor diverges slightly further
from the base SI meaning. Thus the SI base-10 units are "close
enough" and have become the commonly used for base 2 values.

Table 1.1.3.4.1 Base 2 and 10 factors related to bytes

Name
Base
2
Factor

Bytes
Close
Base
10
Factor

Base 10 bytes

1
Kilobyte 210 1,024 103 1,000

1
Megabyte 220 1,048,576 106 1,000,000

1
Gigabyte 230 1,073,741,824 109 1,000,000,000

1
Terabyte 240 1,099,511,627,776 1012 1,000,000,000,000

1
Petabyte 250 1,125,899,906,842,624 1015 1,000,000,000,000,000

1 Exabyte 260 1,152,921,504,606,846,976 1018 1,000,000,000,000,000,000

It can be very useful to commit the base 2 factors to memory as an
aid to quickly correlate the relationship between number-of-bits and
"human" sizes. For example, we can quickly calculate that a 32 bit
computer can address up to four gigabytes of memory by noting that
232 can recombine to 2(2 + 30) or 22 × 230 , which is just 4 × 230 ,

where we know 230 is a gigabyte. A 64-bit value could similarly
address up to 16 exabytes (24 × 260); you might be interested in
working out just how big a number this is. To get a feel for how big
that number is, calculate how long it would take to count to 264 if
you incremented once per second.

Computer Science from the Bottom Up

31

1.1.3.5 Kilo, Mega and Giga Bits

Apart from the confusion related to the overloading of SI units
between binary and base 10, capacities will often be quoted in terms
of bits rather than bytes. Generally this happens when talking about
networking or storage devices; you may have noticed that your ADSL
connection is described as something like 1500 kilobits/second. The
calculation is simple; multiply by 1000 (for the kilo), divide by 8 to get
bytes and then 1024 to get kilobytes (so 1500 kilobits/s=183 kilobytes
per second).

The SI standardisation body has recognised these dual uses and has
specified unique prefixes for binary usage. Under the standard 1024
bytes is a kibibyte , short for kilo binary byte (shortened to KiB). The
other prefixes have a similar prefix (Mebibyte, MiB, for example).
Tradition largely prevents use of these terms, but you may seem them
in some literature.

1.1.3.6 Conversion

The easiest way to convert between bases is to use a computer, after
all, that's what they're good at! However, it is often useful to know
how to do conversions by hand.

The easiest method to convert between bases is repeated division. To
convert, repeatedly divide the quotient by the base, until the quotient
is zero, making note of the remainders at each step. Then, write the
remainders in reverse, starting at the bottom and appending to the
right each time. An example should illustrate; since we are converting
to binary we use a base of 2.

Table 1.1.3.6.1 Convert 203 to binary
Quotient Remainder
20310 ÷ 2 = 101 1
10110 ÷ 2 = 50 1 ↑
5010 ÷ 2 = 25 0 ↑
2510 ÷ 2 = 12 1 ↑
1210 ÷ 2 = 6 0 ↑
610 ÷ 2 = 3 0 ↑
310 ÷ 2 = 1 1 ↑
110 ÷ 2 = 0 1 ↑

Reading from the bottom and appending to the right each time gives
11001011 , which we saw from the previous example was 203.

Computer Science from the Bottom Up

32

1.1.4 Boolean Operations
George Boole was a mathematician who discovered a whole area of
mathematics called Boolean Algebra. Whilst he made his discoveries
in the mid 1800's, his mathematics are the fundamentals of all
computer science. Boolean algebra is a wide ranging topic, we
present here only the bare minimum to get you started.

Boolean operations simply take a particular input and produce a
particular output following a rule. For example, the simplest boolean
operation, not simply inverts the value of the input operand. Other
operands usually take two inputs, and produce a single output.

The fundamental Boolean operations used in computer science are
easy to remember and listed below. We represent them below with
truth tables; they simply show all possible inputs and outputs. The
term true simply reflects 1 in binary.

1.1.4.1 Not

Usually represented by ! , not simply inverts the value, so 0
becomes 1 and 1 becomes 0

Table 1.1.4.1.1 Truth table for not

Input Output
1 0

0 1

1.1.4.2 And

To remember how the and operation works think of it as "if one input
and the other are true, result is true

Table 1.1.4.2.1 Truth table for and

Input 1 Input 2 Output
0 0 0

1 0 0

0 1 0

1 1 1

1.1.4.3 Or

To remember how the or operation works think of it as "if one input
or the other input is true, the result is true

Computer Science from the Bottom Up

33

Table 1.1.4.3.1 Truth table for or

Input 1 Input 2 Output
0 0 0

1 0 1

0 1 1

1 1 1

1.1.4.4 Exclusive Or (xor)

Exclusive or, written as xor is a special case of or where the output
is true if one, and only one, of the inputs is true. This operation can
surprisingly do many interesting tricks, but you will not see a lot of it
in the kernel.

Table 1.1.4.4.1 Truth table for xor

Input 1 Input 2 Output
0 0 0

1 0 1

0 1 1

1 1 0

1.1.5 How computers use boolean operations
Believe it or not, essentially everything your computer does comes
back to the above operations. For example, the half adder is a type of
circuit made up from boolean operations that can add bits together (it
is called a half adder because it does not handle carry bits). Put more
half adders together, and you will start to build something that can
add together long binary numbers. Add some external memory, and
you have a computer.

Electronically, the boolean operations are implemented in gates made
by transistors. This is why you might have heard about transistor
counts and things like Moore's Law. The more transistors, the more
gates, the more things you can add together. To create the modern
computer, there are an awful lot of gates, and an awful lot of
transistors. Some of the latest Itanium processors have around 460
million transistors.

1.1.6 Working with binary in C
In C we have a direct interface to all of the above operations. The

Computer Science from the Bottom Up

34

following table describes the operators

Table 1.1.6.1 Boolean operations in C
Operation Usage in C
not !

and &

or |

xor ^

We use these operations on variables to modify the bits within the
variable. Before we see examples of this, first we must divert to
describe hexadecimal notation.

1.2 Hexadecimal
Hexadecimal refers to a base 16 number system. We use this in
computer science for only one reason, it makes it easy for humans to
think about binary numbers. Computers only ever deal in binary and
hexadecimal is simply a shortcut for us humans trying to work with
the computer.

So why base 16? Well, the most natural choice is base 10, since we
are used to thinking in base 10 from our every day number system.
But base 10 does not work well with binary -- to represent 10
different elements in binary, we need four bits. Four bits, however,
gives us sixteen possible combinations. So we can either take the very
tricky road of trying to convert between base 10 and binary, or take
the easy road and make up a base 16 number system -- hexadecimal!

Hexadecimal uses the standard base 10 numerals, but adds A B C D E
F which refer to 10 11 12 13 14 15 (n.b. we start from zero).

Traditionally, any time you see a number prefixed by 0x this will
denote a hexadecimal number.

As mentioned, to represent 16 different patterns in binary, we would
need exactly four bits. Therefore, each hexadecimal numeral
represents exactly four bits. You should consider it an exercise to
learn the following table off by heart.

Table 1.2.1 Hexadecimal, Binary and Decimal
Hexadecimal Binary Decimal
0 0000 0

1 0001 1

Computer Science from the Bottom Up

35

Hexadecimal Binary Decimal
2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Of course there is no reason not to continue the pattern (say, assign G
to the value 16), but 16 values is an excellent trade off between the
vagaries of human memory and the number of bits used by a
computer (occasionally you will also see base 8 used, for example for
file permissions under UNIX). We simply represent larger numbers of
bits with more numerals. For example, a sixteen bit variable can be
represented by 0xAB12 , and to find it in binary simply take each
individual numeral, convert it as per the table and join them all
together (so 0xAB12 ends up as the 16-bit binary number
1010101100010010). We can use the reverse to convert from binary

back to hexadecimal.

We can also use the same repeated division scheme to change the
base of a number. For example, to find 203 in hexadecimal

Table 1.2.2 Convert 203 to hexadecimal
Quotient Remainder
20310 ÷ 16 = 12 11 (0xB)
1210 ÷ 16 = 0 12 (0xC) ↑

Hence 203 in hexadecimal is 0xCB .

Computer Science from the Bottom Up

36

1.3 Practical Implications
1.3.1 Use of binary in code
Whilst binary is the underlying language of every computer, it is
entirely practical to program a computer in high level languages
without knowing the first thing about it. However, for the low level
code we are interested in a few fundamental binary principles are
used repeatedly.

1.3.2 Masking and Flags
1.3.2.1 Masking

In low level code, it is often important to keep your structures and
variables as space efficient as possible. In some cases, this can
involve effectively packing two (generally related) variables into one.

Remember each bit represents two states, so if we know a variable
only has, say, 16 possible states it can be represented by 4 bits (i.e.
24=16 unique values). But the smallest type we can declare in C is 8
bits (a char), so we can either waste four bits, or find some way to
use those left over bits.

We can easily do this by the process of masking. This uses the rules of
logical operations to extract values.

The process is illustrated in the figure below. We can keep two
separate 4-bit values "inside" a single 8-bit character. We consider the
upper four-bits as one value (blue) and the lower 4-bits (red) as
another. To extract the lower four bits, we set our mask to have the
lower-4 bits set to 1 (0x0F). Since the logical and operation will
only set the bit if both bits are 1 , those bits of the mask set to 0
effectively hide the bits we are not interested in.

Computer Science from the Bottom Up

37

1 1 1 10 0 0 0 0x0F

& & & & & & & &

11 0 1 0 0 0 1

0 0 0 0 0 01 1 0x05

Figure 1.3.2.1.1 Masking

To get the top (blue) four bits, we would invert the mask; in other
words, set the top 4 bits to 1 and the lower 4-bits to 0 . You will note
this gives a result of 1010 0000 (or, in hexadecimal 0xA0) when really
we want to consider this as a unique 4-bit value 1010 (0x0A). To get
the bits into the right position we use the right shift operation 4
times, giving a final value of 0000 1010 .

Computer Science from the Bottom Up

38

1 #include <stdio.h>

#define LOWER_MASK 0x0F
#define UPPER_MASK 0xF0

5
int main(int argc, char* argv[])
{

/* Two 4-bit values stored in one
* 8-bit variable */

10 char value = 0xA5;
char lower = value & LOWER_MASK;
char upper = (value & UPPER_MASK) >> 4;

printf("Lower: %x\n", lower);
15 printf("Upper: %x\n", upper);

}

Example 1.3.2.1.1 Using masks

Setting the bits requires the logical or operation. However, rather
than using 1 's as the mask, we use 0 's. You should draw a diagram
similar to the above figure and work through setting bits with the
logical or operation.

1.3.2.2 Flags

Often a program will have a large number of variables that only exist
as flags to some condition. For example, a state machine is an
algorithm that transitions through a number of different states but
may only be in one at a time. Say it has 8 different states; we could
easily declare 8 different variables, one for each state. But in many
cases it is better to declare one 8 bit variable and assign each bit to
flag flag a particular state.

Flags are a special case of masking, but each bit represents a
particular boolean state (on or off). An n bit variable can hold n
different flags. See the code example below for a typical example of
using flags -- you will see variations on this basic code very often.

Computer Science from the Bottom Up

39

1 #include <stdio.h>

/*
* define all 8 possible flags for an 8 bit variable

5 * name hex binary
*/

#define FLAG1 0x01 /* 00000001 */
#define FLAG2 0x02 /* 00000010 */
#define FLAG3 0x04 /* 00000100 */

10 #define FLAG4 0x08 /* 00001000 */
/* ... and so on */
#define FLAG8 0x80 /* 10000000 */

int main(int argc, char *argv[])
15 {

char flags = 0; /* an 8 bit variable */

/* set flags with a logical or */
flags = flags | FLAG1; /* set flag 1 */

20 flags = flags | FLAG3; /* set flag 3

/* check flags with a logical and. If the flag is set (1)
* then the logical and will return 1, causing the if
* condition to be true. */

25 if (flags & FLAG1)
printf("FLAG1 set!\n");

/* this of course will be untrue. */
if (flags & FLAG8)

30 printf("FLAG8 set!\n");

Computer Science from the Bottom Up

40

/* check multiple flags by using a logical or
* this will pass as FLAG1 is set */

if (flags & (FLAG1|FLAG4))
35 printf("FLAG1 or FLAG4 set!\n");

return 0;
}

Example 1.3.2.2.1 Using flags

2 Types and Number
Representation
2.1 C Standards
Although a slight divergence, it is important to understand a bit of
history about the C language.

C is the common languge of the systems programming world. Every
operating system and its associated system libraries in common use is
written in C, and every system provides a C compiler. To stop the
language diverging across each of these systems where each would
be sure to make numerous incompatible changes, a strict standard
has been written for the language.

Officially this standard is known as ISO/IEC 9899:1999(E), but is
more commonly referred to by its shortened name C99. The standard
is maintained by the International Standards Organisation (ISO) and
the full standard is available for purchase online. Older standards
versions such as C89 (the predecessor to C99 released in 1989) and
ANSI C are no longer in common usage and are encompassed within
the latest standard. The standard documentation is very technical,
and details most every part of the language. For example it explains
the syntax (in Backus Naur form), standard #define values and how
operations should behave.

It is also important to note what the C standards does not define.
Most importantly the standard needs to be appropriate for every

Computer Science from the Bottom Up

41

architecture, both present and future. Consequently it takes care not
to define areas that are architecture dependent. The "glue" between
the C standard and the underlying architecture is the Application
Binary Interface (or ABI) which we discuss below. In several places
the standard will mention that a particular operation or construct has
an unspecified or implementation dependent result. Obviously the
programmer can not depend on these outcomes if they are to write
portable code.

2.1.1 GNU C
The GNU C Compiler, more commonly referred to as gcc, almost
completely implements the C99 standard. However it also implements
a range of extensions to the standard which programmers will often
use to gain extra functionality, at the expense of portability to another
compiler. These extensions are usually related to very low level code
and are much more common in the system programming field; the
most common extension being used in this area being inline assembly
code. Programmers should read the gcc documentation and
understand when they may be using features that diverge from the
standard.

gcc can be directed to adhere strictly to the standard (the -std=c99
flag for example) and warn or create an error when certain things are
done that are not in the standard. This is obviously appropriate if you
need to ensure that you can move your code easily to another
compiler.

2.2 Types
As programmers, we are familiar with using variables to represent an
area of memory to hold a value. In a typed language, such as C, every
variable must be declared with a type. The type tells the compiler
about what we expect to store in a variable; the compiler can then
both allocate sufficient space for this usage and check that the
programmer does not violate the rules of the type. In the example
below, we see an example of the space allocated for some common
types of variables.

Computer Science from the Bottom Up

42

\0

h

e

l

l

o

int a
char c

int b[2]

char *h = "hello"

1 byte

4 bytes

6 bytes

2 x 4 bytes

b[1] | *(b+1)

b[0] | *b

System Memory

Figure 2.2.1 Types

The C99 standard purposely only mentions the smallest possible size

Computer Science from the Bottom Up

43

of each of the types defined for C. This is because across different
processor architectures and operating systems the best size for types
can be wildly different.

To be completely safe programmers need to never assume the size of
any of their variables, however a functioning system obviously needs
agreements on what sizes types are going to be used in the system.
Each architecture and operating system conforms to an Application
Binary Interface or ABI. The ABI for a system fills in the details
between the C standard and the requirements of the underlying
hardware and operating system. An ABI is written for a specific
processor and operating system combination.

Table 2.2.1 Standard Integer Types and Sizes

Type C99 minimum size
(bits)

Common size (32 bit
architecture)

char 8 8
short 16 16
int 16 32
long 32 32
long
long 64 64

Pointers Implementation
dependent 32

Above we can see the only divergence from the standard is that int
is commonly a 32 bit quantity, which is twice the strict minimum 16
bit size that the C99 requires.

Pointers are really just an address (i.e. their value is an address and
thus "points" somewhere else in memory) therefore a pointer needs to
be sufficient in size to be able to address any memory in the system.

2.2.1 64 bit
One area that causes confusion is the introduction of 64 bit
computing. This means that the processor can handle addresses 64
bits in length (specifically the registers are 64 bits wide; a topic we
discuss in Chapter 3, Computer Architecture).

This firstly means that all pointers are required to be a 64 bits wide
so they can represent any possible address in the system. However,
system implementers must then make decisions about the size of the
other types. Two common models are widely used, as shown below.

Computer Science from the Bottom Up

44

Table 2.2.1.1 Standard Scalar Types and Sizes

Type C99 minimum size
(bits)

Common size
(LP64)

Common size
(Windows)

char 8 8 8
short 16 16 16
int 16 32 32
long 32 64 32
long
long 64 64 64

Pointers Implementation
dependent 64 64

You can see that in the LP64 (long-pointer 64) model long values are
defined to be 64 bits wide. This is different to the 32 bit model we
showed previously. The LP64 model is widely used on UNIX systems.

In the other model, long remains a 32 bit value. This maintains
maximum compatibility with 32 code. This model is in use with 64 bit
Windows.

There are good reasons why the size of int was not increased to 64
bits in either model. Consider that if the size of int is increased to
64 bits you leave programmers no way to obtain a 32 bit variable. The
only possibly is redefining shorts to be a larger 32 bit type.

A 64 bit variable is so large that it is not generally required to
represent many variables. For example, loops very rarely repeat more
times than would fit in a 32 bit variable (4294967296 times!). Images
usually are usually represented with 8 bits for each of a red, green
and blue value and an extra 8 bits for extra (alpha channel)
information; a total of 32 bits. Consequently for many cases, using a
64 bit variable will be wasting at least the top 32 bits (if not more).
Not only this, but the size of an integer array has now doubled too.
This means programs take up more system memory (and thus more
cache; discussed in detail in Chapter 3, Computer Architecture) for
no real improvement. For the same reason Windows elected to keep
their long values as 32 bits; since much of the Windows API was
originally written to use long variables on a 32 bit system and hence
does not require the extra bits this saves considerable wasted space
in the system without having to re-write all the API.

If we consider the proposed alternative where short was redefined to
be a 32 bit variable; programmers working on a 64 bit system could
use it for variables they know are bounded to smaller values.
However, when moving back to a 32 bit system their same short
variable would now be only 16 bits long, a value which is much more

Computer Science from the Bottom Up

45

realistically overflowed (65536).

By making a programmer request larger variables when they know
they will be needed strikes a balance with respect to portability
concerns and wasting space in binaries.

2.2.2 Type qualifiers
The C standard also talks about some qualifiers for variable types. For
example const means that a variable will never be modified from its
original value and volatile suggests to the compiler that this value
might change outside program execution flow so the compiler must
be careful not to re-order access to it in any way.

signed and unsigned are probably the two most important qualifiers;
and they say if a variable can take on a negative value or not. We
examine this in more detail below.

Qualifiers are all intended to pass extra information about how the
variable will be used to the compiler. This means two things; the
compiler can check if you are violating your own rules (e.g. writing to
a const value) and it can make optimisations based upon the extra
knowledge (examined in later chapters).

2.2.3 Standard Types
C99 realises that all these rules, sizes and portability concerns can
become very confusing very quickly. To help, it provides a series of
special types which can specify the exact properties of a variable.
These are defined in <stdint.h> and have the form qtypes_t where
q is a qualifier, type is the base type, s is the width in bits and _t

is an extension so you know you are using the C99 defined types.

So for example uint8_t is an unsigned integer exactly 8 bits wide.
Many other types are defined; the complete list is detailed in C99
17.8 or (more cryptically) in the header file. 1

It is up to the system implementing the C99 standard to provide these
types for you by mapping them to appropriate sized types on the
target system; on Linux these headers are provided by the system
libraries.

1. Note that C99 also has portability helpers for printf . The PRI macros
in <inttypes.h> can be used as specifiers for types of specified sizes.
Again see the standard or pull apart the headers for full information.

Computer Science from the Bottom Up

46

2.2.4 Types in action
Below in Example 2.2.4.1, Example of warnings when types are not
matched we see an example of how types place restrictions on what
operations are valid for a variable, and how the compiler can use this
information to warn when variables are used in an incorrect fashion.
In this code, we firstly assign an integer value into a char variable.
Since the char variable is smaller, we loose the correct value of the
integer. Further down, we attempt to assign a pointer to a char to
memory we designated as an integer . This operation can be done;
but it is not safe. The first example is run on a 32-bit Pentium
machine, and the correct value is returned. However, as shown in the
second example, on a 64-bit Itanium machine a pointer is 64 bits (8
bytes) long, but an integer is only 4 bytes long. Clearly, 8 bytes can
not fit into 4! We can attempt to "fool" the compiler by casting the
value before assigning it; note that in this case we have shot
ourselves in the foot by doing this cast and ignoring the compiler
warning since the smaller variable can not hold all the information
from the pointer and we end up with an invalid address.

Computer Science from the Bottom Up

47

1 /*
* types.c
*/

5 #include <stdio.h>
#include <stdint.h>

int main(void)
{

10 char a;
char *p = "hello";

int i;

15 // moving a larger variable into a smaller one
i = 0x12341234;
a = i;
i = a;
printf("i is %d\n", i);

20
// moving a pointer into an integer
printf("p is %p\n", p);
i = p;
// "fooling" with casts

25 i = (int)p;
p = (char*)i;
printf("p is %p\n", p);

return 0;
30 }

Computer Science from the Bottom Up

48

1 $ uname -m
i686

$ gcc -Wall -o types types.c
5 types.c: In function 'main':

types.c:19: warning: assignment makes integer from pointer without a cast

$./types
i is 52

10 p is 0x80484e8
p is 0x80484e8

$ uname -m
ia64

15
$ gcc -Wall -o types types.c
types.c: In function 'main':
types.c:19: warning: assignment makes integer from pointer without a cast
types.c:21: warning: cast from pointer to integer of different size

20 types.c:22: warning: cast to pointer from integer of different size

$./types
i is 52
p is 0x40000000000009e0

25 p is 0x9e0

Example 2.2.4.1 Example of warnings when types are not
matched

Computer Science from the Bottom Up

49

2.3 Number Representation
2.3.1 Negative Values
With our modern base 10 numeral system we indicate a negative
number by placing a minus (-) sign in front of it. When using binary
we need to use a different system to indicate negative numbers.

There is only one scheme in common use on modern hardware, but
C99 defines three acceptable methods for negative value
representation.

2.3.1.1 Sign Bit

The most straight forward method is to simply say that one bit of the
number indicates either a negative or positive value depending on it
being set or not.

This is analogous to mathematical approach of having a + and - .
This is fairly logical, and some of the original computers did represent
negative numbers in this way. But using binary numbers opens up
some other possibilities which make the life of hardware designers
easier.

However, notice that the value 0 now has two equivalent values; one
with the sign bit set and one without. Sometimes these values are
referred to as +0 and -0 respectively.

2.3.1.2 One's Complement

One's complement simply applies the not operation to the positive
number to represent the negative number. So, for example the value
-90 (-0x5A) is represented by ~01011010 = 10100101 1

With this scheme the biggest advantage is that to add a negative
number to a positive number no special logic is required, except that
any additional carry left over must be added back to the final value.
Consider

Table 2.3.1.2.1 One's Complement Addition
Decimal Binary Op
-90 10100101 +
100 01100100

1. The ~ operator is the C language operator to apply NOT to the value. It
is also occasionally called the one's complement operator, for obvious
reasons now!

Computer Science from the Bottom Up

50

Decimal Binary Op
--- --------
10 100001001 9

00001010 10

If you add the bits one by one, you find you end up with a carry bit at
the end (highlighted above). By adding this back to the original we
end up with the correct value, 10

Again we still have the problem with two zeros being represented.
Again no modern computer uses one's complement, mostly because
there is a better scheme.

2.3.1.3 Two's Complement

Two's complement is just like one's complement, except the negative
representation has one added to it and we discard any left over carry
bit. So to continue with the example from before, -90 would be
~01011010+1=10100101+1 = 10100110 .

This means there is a slightly odd symmetry in the numbers that can
be represented; for example with an 8 bit integer we have 2^8 = 256
possible values; with our sign bit representation we could represent
-127 thru 127 but with two's complement we can represent -127 thru
128. This is because we have removed the problem of having two
zeros; consider that "negative zero" is (~00000000
+1)=(11111111+1)=00000000 (note discarded carry bit).

Table 2.3.1.3.1 Two's Complement Addition
Decimal Binary Op
-90 10100110 +
100 01100100
--- --------
10 00001010

You can see that by implementing two's complement hardware
designers need only provide logic for addition circuits; subtraction
can be done by two's complement negating the value to be subtracted
and then adding the new value.

Similarly you could implement multiplication with repeated addition
and division with repeated subtraction. Consequently two's
complement can reduce all simple mathematical operations down to
addition!

Computer Science from the Bottom Up

51

All modern computers use two's complement representation.

2.3.1.3.1 Sign-extension

Because of two's complement format, when increasing the size of
signed value, it is important that the additional bits be sign-extended;
that is, copied from the top-bit of the existing value.

For example, the value of an 32-bit int -10 would be represented in
two's complement binary as 11111111111111111111111111110110 . If one
were to cast this to a 64-bit long long int , we would need to ensure
that the additional 32-bits were set to 1 to maintain the same sign as
the original.

Thanks to two's complement, it is sufficient to take the top bit of the
existing value and replace all the added bits with this value. This
processes is referred to as sign-extension and is usually handled by
the compiler in situations as defined by the language standard, with
the processor generally providing special instructions to take a value
and sign-extended it to some larger value.

2.3.2 Floating Point
So far we have only discussed integer or whole numbers; the class of
numbers that can represent decimal values is called floating point.

To create a decimal number, we require some way to represent the
concept of the decimal place in binary. The most common scheme for
this is known as the IEEE-754 floating point standard because the
standard is published by the Institute of Electric and Electronics
Engineers. The scheme is conceptually quite simple and is somewhat
analogous to "scientific notation".

In scientific notation the value 123.45 might commonly be
represented as 1.2345x102 . We call 1.2345 the mantissa or
significand, 10 is the radix and 2 is the exponent.

In the IEEE floating point model, we break up the available bits to
represent the sign, mantissa and exponent of a decimal number. A
decimal number is represented by sign × significand × 2^exponent .

The sign bit equates to either 1 or -1 . Since we are working in
binary, we always have the implied radix of 2 .

There are differing widths for a floating point value -- we examine
below at only a 32 bit value. More bits allows greater precision.

Computer Science from the Bottom Up

52

Table 2.3.2.1 IEEE Floating Point
Sign Exponent Significand/Mantissa
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM

The other important factor is bias of the exponent. The exponent
needs to be able to represent both positive and negative values, thus
an implied value of 127 is subtracted from the exponent. For
example, an exponent of 0 has an exponent field of 127 , 128 would
represent 1 and 126 would represent -1 .

Each bit of the significand adds a little more precision to the values
we can represent. Consider the scientific notation representation of
the value 198765 . We could write this as 1.98765x106 , which
corresponds to a representation below

Table 2.3.2.2 Scientific Notation for 1.98765x10^6

100 . 10-1 10-2 10-3 10-4 10-5

1 . 9 8 7 6 5

Each additional digit allows a greater range of decimal values we can
represent. In base 10, each digit after the decimal place increases the
precision of our number by 10 times. For example, we can represent
0.0 through 0.9 (10 values) with one digit of decimal place, 0.00

through 0.99 (100 values) with two digits, and so on. In binary,
rather than each additional digit giving us 10 times the precision, we
only get two times the precision, as illustrated in the table below. This
means that our binary representation does not always map in a
straight-forward manner to a decimal representation.

Table 2.3.2.3 Significands in binary

20 . 2-1 2-2 2-3 2-4 2-5

1 . 1/2 1/4 1/8 1/16 1/32
1 . 0.5 0.25 0.125 0.0625 0.03125

With only one bit of precision, our fractional precision is not very big;
we can only say that the fraction is either 0 or 0.5 . If we add
another bit of precision, we can now say that the decimal value is one
of either 0,0.25,0.5,0.75 . With another bit of precision we can now
represent the values 0,0.125,0.25,0.375,0.5,0.625,0.75,0.875 .

Increasing the number of bits therefore allows us greater and greater
precision. However, since the range of possible numbers is infinite we
will never have enough bits to represent any possible value.

For example, if we only have two bits of precision and need to

Computer Science from the Bottom Up

53

represent the value 0.3 we can only say that it is closest to 0.25 ;
obviously this is insufficient for most any application. With 22 bits of
significand we have a much finer resolution, but it is still not enough
for most applications. A double value increases the number of
significand bits to 52 (it also increases the range of exponent values
too). Some hardware has an 84-bit float, with a full 64 bits of
significand. 64 bits allows a tremendous precision and should be
suitable for all but the most demanding of applications (XXX is this
sufficient to represent a length to less than the size of an atom?)

Computer Science from the Bottom Up

54

1 $ cat float.c
#include <stdio.h>

int main(void)
5 {

float a = 0.45;
float b = 8.0;

double ad = 0.45;
10 double bd = 8.0;

printf("float+float, 6dp : %f\n", a+b);
printf("double+double, 6dp : %f\n", ad+bd);
printf("float+float, 20dp : %10.20f\n", a+b);

15 printf("dobule+double, 20dp : %10.20f\n", ad+bd);

return 0;
}

20 $ gcc -o float float.c

$./float
float+float, 6dp : 8.450000
double+double, 6dp : 8.450000

25 float+float, 20dp : 8.44999998807907104492
dobule+double, 20dp : 8.44999999999999928946

$ python
Python 2.4.4 (#2, Oct 20 2006, 00:23:25)

30 [GCC 4.1.2 20061015 (prerelease) (Debian 4.1.1-16.1)] on linux2

Computer Science from the Bottom Up

55

Type "help", "copyright", "credits" or "license" for more information.
>>> 8.0 + 0.45
8.4499999999999993

Example 2.3.2.1 Floats versus Doubles

A practical example is illustrated above. Notice that for the default 6
decimal places of precision given by printf both answers are the
same, since they are rounded up correctly. However, when asked to
give the results to a larger precision, in this case 20 decimal places,
we can see the results start to diverge. The code using doubles has a
more accurate result, but it is still not exactly correct. We can also
see that programmers not explicitly dealing with float values still
have problems with precision of variables!

2.3.2.1 Normalised Values

In scientific notation, we can represent a value in many different
ways. For example, 10023x10^0 = 1002.3x101 = 100.23x102 . We thus
define the normalised version as the one where 1/radix <=
significand < 1 . In binary this ensures that the leftmost bit of the
significand is always one. Knowing this, we can gain an extra bit of
precision by having the standard say that the leftmost bit being one is
implied.

Table 2.3.2.1.1 Example of normalising 0.375

20 . 2-1 2-2 2-3 2-4 2-5 Exponent Calculation

0 . 0 1 1 0 0 2^0 (0.25+0.125) × 1 = 0.375

0 . 1 1 0 0 0 2^-1 (0.5+0.25)×.5=0.375

1 . 1 0 0 0 0 2^-2 (1+0.5)×0.25=0.375

As you can see above, we can make the value normalised by moving
the bits upwards as long as we compensate by increasing the
exponent.

2.3.2.1.1 Normalisation Tricks

A common problem programmers face is finding the first set bit in a
bitfield. Consider the bitfield 0100 ; from the right the first set bit
would be bit 2 (starting from zero, as is conventional).

The standard way to find this value is to shift right, check if the

Computer Science from the Bottom Up

56

uppermost bit is a 1 and either terminate or repeat. This is a slow
process; if the bitfield is 64 bits long and only the very last bit is set,
you must go through all the preceding 63 bits!

However, if this bitfield value were the signficand of a floating point
number and we were to normalise it, the value of the exponent would
tell us how many times it was shifted. The process of normalising a
number is generally built into the floating point hardware unit on the
processor, so operates very fast; usually much faster than the
repeated shift and check operations.

The example program below illustrates two methods of finding the
first set bit on an Itanium processor. The Itanium, like most server
processors, has support for an 80-bit extended floating point type,
with a 64-bit significand. This means a unsigned long neatly fits into
the significand of a long double . When the value is loaded it is
normalised, and and thus by reading the exponent value (minus the
16 bit bias) we can see how far it was shifted.

Computer Science from the Bottom Up

57

1 #include <stdio.h>

int main(void)
{

5 // in binary = 1000 0000 0000 0000
// bit num 5432 1098 7654 3210
int i = 0x8000;
int count = 0;
while (!(i & 0x1)) {

10 count ++;
i = i >> 1;

}
printf("First non-zero (slow) is %d\n", count);

15 // this value is normalised when it is loaded
long double d = 0x8000UL;
long exp;

// Itanium "get floating point exponent" instruction
20 asm ("getf.exp %0=%1" : "=r"(exp) : "f"(d));

// note exponent include bias
printf("The first non-zero (fast) is %d\n", exp - 65535);

25 }

Example 2.3.2.1.1.1 Program to find first set bit

2.3.2.2 Bringing it together

In the example code below we extract the components of a floating
point number and print out the value it represents. This will only
work for a 32 bit floating point value in the IEEE format; however this
is common for most architectures with the float type.

Computer Science from the Bottom Up

58

1 #include <stdio.h>
#include <string.h>
#include <stdlib.h>

5 /* return 2^n */
int two_to_pos(int n)
{

if (n == 0)
return 1;

10 return 2 * two_to_pos(n - 1);
}

double two_to_neg(int n)
{

15 if (n == 0)
return 1;

return 1.0 / (two_to_pos(abs(n)));
}

20 double two_to(int n)
{

if (n >= 0)
return two_to_pos(n);

if (n < 0)
25 return two_to_neg(n);

return 0;
}

/* Go through some memory "m" which is the 24 bit significand of a
30 floating point number. We work "backwards" from the bits

Computer Science from the Bottom Up

59

furthest on the right, for no particular reason. */
double calc_float(int m, int bit)
{

/* 23 bits; this terminates recursion */
35 if (bit > 23)

return 0;

/* if the bit is set, it represents the value 1/2^bit */
if ((m >> bit) & 1)

40 return 1.0L/two_to(23 - bit) + calc_float(m, bit + 1);

/* otherwise go to the next bit */
return calc_float(m, bit + 1);

}
45

int main(int argc, char *argv[])
{

float f;
int m,i,sign,exponent,significand;

50
if (argc != 2)
{

printf("usage: float 123.456\n");
exit(1);

55 }

if (sscanf(argv[1], "%f", &f) != 1)
{

printf("invalid input\n");
60 exit(1);

Computer Science from the Bottom Up

60

}

/* We need to "fool" the compiler, as if we start to use casts
(e.g. (int)f) it will actually do a conversion for us. We

65 want access to the raw bits, so we just copy it into a same
sized variable. */

memcpy(&m, &f, 4);

/* The sign bit is the first bit */
70 sign = (m >> 31) & 0x1;

/* Exponent is 8 bits following the sign bit */
exponent = ((m >> 23) & 0xFF) - 127;

75 /* Significand fills out the float, the first bit is implied
to be 1, hence the 24 bit OR value below. */

significand = (m & 0x7FFFFF) | 0x800000;

/* print out a power representation */
80 printf("%f = %d * (", f, sign ? -1 : 1);

for(i = 23 ; i >= 0 ; i--)
{

if ((significand >> i) & 1)
printf("%s1/2^%d", (i == 23) ? "" : " + ",

85 23-i);
}
printf(") * 2^%d\n", exponent);

/* print out a fractional representation */
90 printf("%f = %d * (", f, sign ? -1 : 1);

Computer Science from the Bottom Up

61

for(i = 23 ; i >= 0 ; i--)
{

if ((significand >> i) & 1)
printf("%s1/%d", (i == 23) ? "" : " + ",

95 (int)two_to(23-i));
}
printf(") * 2^%d\n", exponent);

/* convert this into decimal and print it out */
100 printf("%f = %d * %.12g * %f\n",

f,
(sign ? -1 : 1),
calc_float(significand, 0),
two_to(exponent));

105
/* do the math this time */
printf("%f = %.12g\n",

f,
(sign ? -1 : 1) *

110 calc_float(significand, 0) *
two_to(exponent)
);

return 0;
115 }

Example 2.3.2.2.1 Examining Floats

Sample output of the value 8.45 , which we previously examined, is
shown below.

Computer Science from the Bottom Up

62

1 $./float 8.45
8.450000 = 1 * (1/2^0 + 1/2^5 + 1/2^6 + 1/2^7 + 1/2^10 + 1/2^11 + 1/2^14 + 1/2^15 + 1/2^18 + 1/2^19 + 1/2^22 + 1/2^23) * 2^3
8.450000 = 1 * (1/1 + 1/32 + 1/64 + 1/128 + 1/1024 + 1/2048 + 1/16384 + 1/32768 + 1/262144 + 1/524288 + 1/4194304 + 1/8388608) * 2^3
8.450000 = 1 * 1.05624997616 * 8.000000

5 8.450000 = 8.44999980927

Example 2.3.2.2.2 Analysis of 8.45

From this example, we get some idea of how the inaccuracies creep
into our floating point numbers.

Computer Science from the Bottom Up

63

Chapter 3. Computer
Architecture
1 The CPU

MEMORY

INSTRUCTIONS

R2=LOAD 0x100

R1=100

0x100 | 10

0x090 | 0

0x120 | 0

CPU

0x110 | 110

R3=ADD R1,R2

STORE 0x110=R3

R
EG

IS
TE

R
S

The CPU performs instructions on values held in registers. This example
shows firstly setting the value of R1 to 100, loading the value from memory
location 0x100 into R2, adding the two values together and placing the
result in R3 and finally storing the new value (110) to R4 (for further use).

Figure 1.1 The CPU

To greatly simplify, a computer consists of a central processing unit
(CPU) attached to memory. The figure above illustrates the general
principle behind all computer operations.

The CPU executes instructions read from memory. There are two
categories of instructions

1. Those that load values from memory into registers and store
values from registers to memory.

Computer Science from the Bottom Up

64

2. Those that operate on values stored in registers. For example
adding, subtracting multiplying or dividing the values in two
registers, performing bitwise operations (and, or, xor, etc) or
performing other mathematical operations (square root, sin,
cos, tan, etc).

So in the example we are simply adding 100 to a value stored in
memory, and storing this new result back into memory.

1.1 Branching
Apart from loading or storing, the other important operation of a CPU
is branching. Internally, the CPU keeps a record of the next
instruction to be executed in the instruction pointer. Usually, the
instruction pointer is incremented to point to the next instruction
sequentially; the branch instruction will usually check if a specific
register is zero or if a flag is set and, if so, will modify the pointer to a
different address. Thus the next instruction to execute will be from a
different part of program; this is how loops and decision statements
work.

For example, a statement like if (x==0) might be implemented by
finding the or of two registers, one holding x and the other zero; if
the result is zero the comparison is true (i.e. all bits of x were zero)
and the body of the statement should be taken, otherwise branch past
the body code.

1.2 Cycles
We are all familiar with the speed of the computer, given in
Megahertz or Gigahertz (millions or thousands of millions cycles per
second). This is called the clock speed since it is the speed that an
internal clock within the computer pulses.

The pulses are used within the processor to keep it internally
synchronised. On each tick or pulse another operation can be started;
think of the clock like the person beating the drum to keep the
rower's oars in sync.

1.3 Fetch, Decode, Execute, Store
Executing a single instruction consists of a particular cycle of events;
fetching, decoding, executing and storing.

For example, to do the add instruction above the CPU must

Computer Science from the Bottom Up

65

1. Fetch : get the instruction from memory into the processor.

2. Decode : internally decode what it has to do (in this case add).

3. Execute : take the values from the registers, actually add them
together

4. Store : store the result back into another register. You might
also see the term retiring the instruction.

1.3.1 Looking inside a CPU
Internally the CPU has many different sub components that perform
each of the above steps, and generally they can all happen
independently of each other. This is analogous to a physical
production line, where there are many stations where each step has a
particular task to perform. Once done it can pass the results to the
next station and take a new input to work on.

Computer Science from the Bottom Up

66

Store
Load

FP

* /
+ -

FP

Decode Instruction

Floating Point Register File

AGU ALU

SSE/MMX (etc)

program code

Integer Register File

Cache

RAM

The CPU is made up of many different sub-components, each doing a
dedicated task.

Figure 1.3.1.1 Inside the CPU

Figure 1.3.1.1, Inside the CPU shows a very simple block diagram
illustrating some of the main parts of a modern CPU.

You can see the instructions come in and are decoded by the
processor. The CPU has two main types of registers, those for integer
calculations and those for floating point calculations. Floating point is
a way of representing numbers with a decimal place in binary form,
and is handled differently within the CPU. MMX (multimedia
extension) and SSE (Streaming Single Instruction Multiple Data) or
Altivec registers are similar to floating point registers.

A register file is the collective name for the registers inside the CPU.

Computer Science from the Bottom Up

67

Below that we have the parts of the CPU which really do all the work.

We said that processors are either loading or storing a value into a
register or from a register into memory, or doing some operation on
values in registers.

The Arithmetic Logic Unit (ALU) is the heart of the CPU operation. It
takes values in registers and performs any of the multitude of
operations the CPU is capable of. All modern processors have a
number of ALUs so each can be working independently. In fact,
processors such as the Pentium have both fast and slow ALUs; the
fast ones are smaller (so you can fit more on the CPU) but can do only
the most common operations, slow ALUs can do all operations but are
bigger.

The Address Generation Unit (AGU) handles talking to cache and
main memory to get values into the registers for the ALU to operate
on and get values out of registers back into main memory.

Floating point registers have the same concepts, but use slightly
different terminology for their components.

1.3.2 Pipelining
As we can see above, whilst the ALU is adding registers together is
completely separate to the AGU writing values back to memory, so
there is no reason why the CPU can not be doing both at once. We
also have multiple ALUs in the system, each which can be working on
separate instructions. Finally the CPU could be doing some floating
point operations with its floating point logic whilst integer
instructions are in flight too. This process is called pipelining1, and a
processor that can do this is referred to as a superscalar architecture.
All modern processors are superscalar.

Another analogy might be to think of the pipeline like a hose that is
being filled with marbles, except our marbles are instructions for the
CPU. Ideally you will be putting your marbles in one end, one after
the other (one per clock pulse), filling up the pipe. Once full, for each
marble (instruction) you push in all the others will move to the next
position and one will fall out the end (the result).

Branch instruction play havoc with this model however, since they
may or may not cause execution to start from a different place. If you
are pipelining, you will have to basically guess which way the branch
will go, so you know which instructions to bring into the pipeline. If

1. In fact, any modern processor has many more than four stages it can
pipeline, above we have only shown a very simplified view. The more
stages that can be executed at the same time, the deeper the pipeline.

Computer Science from the Bottom Up

68

the CPU has predicted correctly, everything goes fine!1 Conversely, if
the processor has predicted incorrectly it has wasted a lot of time and
has to clear the pipeline and start again.

This process is usually referred to as a pipeline flush and is analogous
to having to stop and empty out all your marbles from your hose!

1.3.2.1 Branch Prediction

pipeline flush, predict taken, predict not taken, branch delay slots

1.3.3 Reordering
In fact, if the CPU is the hose, it is free to reorder the marbles within
the hose, as long as they pop out the end in the same order you put
them in. We call this program order since this is the order that
instructions are given in the computer program.

1
1: r3 = r1 * r2
2: r4 = r2 + r3
3: r7 = r5 * r6

5 4: r8 = r1 + r7

Figure 1.3.3.1 Reorder buffer example

Consider an instruction stream such as that shown in Figure 1.3.3.1,
Reorder buffer example Instruction 2 needs to wait for instruction 1
to complete fully before it can start. This means that the pipeline has
to stall as it waits for the value to be calculated. Similarly instructions
3 and 4 have a dependency on r7. However, instructions 2 and 3 have
no dependency on each other at all; this means they operate on
completely separate registers. If we swap instructions 2 and 3 we can
get a much better ordering for the pipeline since the processor can be
doing useful work rather than waiting for the pipeline to complete to
get the result of a previous instruction.

1. Processors such as the Pentium use a trace cache to keep a track of
which way branches are going. Much of the time it can predict which
way a branch will go by remembering its previous result. For example,
in a loop that happens 100 times, if you remember the last result of the
branch you will be right 99 times, since only the last time will you
actually continue with the program.

Computer Science from the Bottom Up

69

However, when writing very low level code some instructions may
require some security about how operations are ordered. We call this
requirement memory semantics. If you require acquire semantics this
means that for this instruction you must ensure that the results of all
previous instructions have been completed. If you require release
semantics you are saying that all instructions after this one must see
the current result. Another even stricter semantic is a memory
barrier or memory fence which requires that operations have been
committed to memory before continuing.

On some architectures these semantics are guaranteed for you by the
processor, whilst on others you must specify them explicitly. Most
programmers do not need to worry directly about them, although you
may see the terms.

1.4 CISC v RISC
A common way to divide computer architectures is into Complex
Instruction Set Computer (CISC) and Reduced Instruction Set
Computer (RISC).

Note in the first example, we have explicitly loaded values into
registers, performed an addition and stored the result value held in
another register back to memory. This is an example of a RISC
approach to computing -- only performing operations on values in
registers and explicitly loading and storing values to and from
memory.

A CISC approach may be only a single instruction taking values from
memory, performing the addition internally and writing the result
back. This means the instruction may take many cycles, but ultimately
both approaches achieve the same goal.

All modern architectures would be considered RISC architectures1.

There are a number of reasons for this

• Whilst RISC makes assembly programming becomes more
complex, since virtually all programmers use high level
languages and leave the hard work of producing assembly code
to the compiler, so the other advantages outweigh this
disadvantage.

• Because the instructions in a RISC processor are much more

1. Even the most common architecture, the Intel Pentium, whilst having an
instruction set that is categorised as CISC, internally breaks down
instructions to RISC style sub-instructions inside the chip before
executing.

Computer Science from the Bottom Up

70

simple, there is more space inside the chip for registers. As we
know from the memory hierarchy, registers are the fastest type
of memory and ultimately all instructions must be performed
on values held in registers, so all other things being equal more
registers leads to higher performance.

• Since all instructions execute in the same time, pipelining is
possible. We know pipelining requires streams of instructions
being constantly fed into the processor, so if some instructions
take a very long time and others do not, the pipeline becomes
far to complex to be effective.

1.4.1 EPIC
The Itanium processor, which is used in many example through this
book, is an example of a modified architecture called Explicitly
Parallel Instruction Computing.

We have discussed how superscaler processors have pipelines that
have many instructions in flight at the same time in different parts of
the processor. Obviously for this to work as well as possible
instructions should be given the processor in an order that can make
best use of the available elements of the CPU.

Traditionally organising the incoming instruction stream has been the
job of the hardware. Instructions are issued by the program in a
sequential manner; the processor must look ahead and try to make
decisions about how to organise the incoming instructions.

The theory behind EPIC is that there is more information available at
higher levels which can make these decisions better than the
processor. Analysing a stream of assembly language instructions, as
current processors do, loses a lot of information that the programmer
may have provided in the original source code. Think of it as the
difference between studying a Shakespeare play and reading the
Cliff's Notes version of the same. Both give you the same result, but
the original has all sorts of extra information that sets the scene and
gives you insight into the characters.

Thus the logic of ordering instructions can be moved from the
processor to the compiler. This means that compiler writers need to
be smarter to try and find the best ordering of code for the processor.
The processor is also significantly simplified, since a lot of its work
has been moved to the compiler.1

Another term often used around EPIC is Very Long Instruction World
(VLIW), which is where each instruction to the processor is extended

1.

Computer Science from the Bottom Up

71

to tell the processor about where it should execute the instruction in
its internal units. The problem with this approach is that code is then
completely dependent on the model of processor is has been compiled
for. Companies are always making revisions to hardware, and making
customers recompile their application every single time, and maintain
a range of different binaries was impractical.

EPIC solves this in the usual computer science manner by adding a
layer of abstraction. Rather than explicitly specifying the exact part of
the processor the instructions should execute on, EPIC creates a
simplified view with a few core units like memory, integer and floating
point.

2 Memory
2.1 Memory Hierarchy
The CPU can only directly fetch instructions and data from cache
memory, located directly on the processor chip. Cache memory must
be loaded in from the main system memory (the Random Access
Memory, or RAM). RAM however, only retains its contents when the
power is on, so needs to be stored on more permanent storage.

We call these layers of memory the memory hierarchy

Table 2.1.1 Memory Hierarchy
Speed Memory Description

Fastest Cache

Cache memory is memory actually embedded
inside the CPU. Cache memory is very fast,
typically taking only once cycle to access, but
since it is embedded directly into the CPU there is
a limit to how big it can be. In fact, there are
several sub-levels of cache memory (termed L1,
L2, L3) all with slightly increasing speeds.

RAM

All instructions and storage addresses for the
processor must come from RAM. Although RAM is
very fast, there is still some significant time taken
for the CPU to access it (this is termed latency).
RAM is stored in separate, dedicated chips
attached to the motherboard, meaning it is much
larger than cache memory.

Slowest Disk
We are all familiar with software arriving on a
floppy disk or CDROM, and saving our files to the
hard disk. We are also familiar with the long time
a program can take to load from the hard disk --

Computer Science from the Bottom Up

72

Speed Memory Description
having physical mechanisms such as spinning
disks and moving heads means disks are the
slowest form of storage. But they are also by far
the largest form of storage.

The important point to know about the memory hierarchy is the trade
offs between speed and size — the faster the memory the smaller it is.
Of course, if you can find a way to change this equation, you'll end up
a billionaire!

The reason caches are effective is because computer code generally
exhibits two forms of locality

1. Spatial locality suggests that data within blocks is likely to be
accessed together.

2. Temporal locality suggests that data that was used recently will
likely be used again shortly.

This means that benefits are gained by implementing as much quickly
accessible memory (temporal) storing small blocks of relevant
information (spatial) as practically possible.

2.2 Cache in depth
Cache is one of the most important elements of the CPU architecture.
To write efficient code developers need to have an understanding of
how the cache in their systems works.

The cache is a very fast copy of the slower main system memory.
Cache is much smaller than main memories because it is included
inside the processor chip alongside the registers and processor logic.
This is prime real estate in computing terms, and there are both
economic and physical limits to its maximum size. As manufacturers
find more and more ways to cram more and more transistors onto a
chip cache sizes grow considerably, but even the largest caches are
tens of megabytes, rather than the gigabytes of main memory or
terabytes of hard disk otherwise common.

The cache is made up of small chunks of mirrored main memory. The
size of these chunks is called the line size, and is typically something
like 32 or 64 bytes. When talking about cache, it is very common to
talk about the line size, or a cache line, which refers to one chunk of
mirrored main memory. The cache can only load and store memory in
sizes a multiple of a cache line.

Caches have their own hierarchy, commonly termed L1, L2 and L3. L1

Computer Science from the Bottom Up

73

cache is the fastest and smallest; L2 is bigger and slower, and L3
more so.

L1 caches are generally further split into instruction caches and data,
known as the "Harvard Architecture" after the relay based Harvard
Mark-1 computer which introduced it. Split caches help to reduce
pipeline bottlenecks as earlier pipeline stages tend to reference the
instruction cache and later stages the data cache. Apart from
reducing contention for a shared resource, providing separate caches
for instructions also allows for alternate implementations which may
take advantage of the nature of instruction streaming; they are read-
only so do not need expensive on-chip features such as multi-porting,
nor need to handle handle sub-block reads because the instruction
stream generally uses more regular sized accesses.

4 way set associative

set

way

Fully AssociativeDirect

Total system memory

Possible locations in cache for shaded values

A given cache line may find a valid home in one of the shaded entries.

Figure 2.2.1 Cache Associativity

During normal operation the processor is constantly asking the cache
to check if a particular address is stored in the cache, so the cache
needs some way to very quickly find if it has a valid line present or

Computer Science from the Bottom Up

74

not. If a given address can be cached anywhere within the cache,
every cache line needs to be searched every time a reference is made
to determine a hit or a miss. To keep searching fast this is done in
parallel in the cache hardware, but searching every entry is generally
far too expensive to implement for a reasonable sized cache. Thus the
cache can be made simpler by enforcing limits on where a particular
address must live. This is a trade-off; the cache is obviously much,
much smaller than the system memory, so some addresses must alias
others. If two addresses which alias each other are being constantly
updated they are said to fight over the cache line. Thus we can
categorise caches into three general types, illustrated in Figure 2.2.1,
Cache Associativity.

• Direct mapped caches will allow a cache line to exist only in a
singe entry in the cache. This is the simplest to implement in
hardware, but as illustrated in Figure 2.2.1, Cache
Associativity there is no potential to avoid aliasing because the
two shaded addresses must share the same cache line.

• Fully Associative caches will allow a cache line to exist in any
entry of the cache. This avoids the problem with aliasing, since
any entry is available for use. But it is very expensive to
implement in hardware because every possible location must
be looked up simultaneously to determine if a value is in the
cache.

• Set Associative caches are a hybrid of direct and fully
associative caches, and allow a particular cache value to exist
in some subset of the lines within the cache. The cache is
divided into even compartments called ways, and a particular
address could be located in any way. Thus an n-way set
associative cache will allow a cache line to exist in any entry of
a set sized total blocks mod n — Figure 2.2.1, Cache
Associativity shows a sample 8-element, 4-way set associative
cache; in this case the two addresses have four possible
locations, meaning only half the cache must be searched upon
lookup. The more ways, the more possible locations and the
less aliasing, leading to overall better performance.

Once the cache is full the processor needs to get rid of a line to make
room for a new line. There are many algorithms by which the
processor can choose which line to evict; for example least recently
used (LRU) is an algorithm where the oldest unused line is discarded
to make room for the new line.

When data is only read from the cache there is no need to ensure
consistency with main memory. However, when the processor starts
writing to cache lines it needs to make some decisions about how to
update the underlying main memory. A write-through cache will write
the changes directly into the main system memory as the processor

Computer Science from the Bottom Up

75

updates the cache. This is slower since the process of writing to the
main memory is, as we have seen, slower. Alternatively a write-back
cache delays writing the changes to RAM until absolutely necessary.
The obvious advantage is that less main memory access is required
when cache entries are written. Cache lines that have been written
but not committed to memory are referred to as dirty. The
disadvantage is that when a cache entry is evicted, it may require two
memory accesses (one to write dirty data main memory, and another
to load the new data).

If an entry exists in both a higher-level and lower-level cache at the
same time, we say the higher-level cache is inclusive. Alternatively, if
the higher-level cache having a line removes the possibility of a lower
level cache having that line, we say it is exclusive. This choice is
discussed further in Section 4.1.1.1, Cache exclusivity in SMP
systems.

2.2.1 Cache Addressing
So far we have not discussed how a cache decides if a given address
resides in the cache or not. Clearly, caches must keep a directory of
what data currently resides in the cache lines. The cache directory
and data may co-located on the processor, but may also be separate —
such as in the case of the POWER5 processor which has an on-core
L3 directory, but actually accessing the data requires traversing the
L3 bus to access off-core memory. An arrangement like this can
facilitate quicker hit/miss processing without the other costs of
keeping the entire cache on-core.

Computer Science from the Bottom Up

76

M
U

X

Way 1

Way 2

M
U

X

Way 1

Way 2

Way 3

Way 4

Offset
TAG INDEX

Less Associative

Less set-associativity means more index bits

Offset
TAG INDEX

More Associative

More set-associativity means more tag bits

Address

Address

Tags need to be checked in parallel to keep latency times low; more tag
bits (i.e. less set associativity) requires more complex hardware to achieve
this. Alternatively more set associativity means less tags, but the processor
now needs hardware to multiplex the output of the many sets, which can
also add latency.

Figure 2.2.1.1 Cache tags

To quickly decide if an address lies within the cache it is separated
into three parts; the tag and the index and the offset.

The offset bits depend on the line size of the cache. For example, a
32-byte line size would use the last 5-bits (i.e. 25) of the address as
the offset into the line.

The index is the particular cache line that an entry may reside in. As
an example, let us consider a cache with 256 entries. If this is a
direct-mapped cache, we know the data may reside in only one
possible line, so the next 8-bits (28) after the offset describe the line
to check - between 0 and 255.

Now, consider the same 256 element cache, but divided into two
ways. This means there are two groups of 128 lines, and the given
address may reside in either of these groups. Consequently only
7-bits are required as an index to offset into the 128-entry ways. For a
given cache size, as we increase the number of ways, we decrease the
number of bits required as an index since each way gets smaller.

The cache directory still needs to check if the particular address

Computer Science from the Bottom Up

77

stored in the cache is the one it is interested in. Thus the remaining
bits of the address are the tag bits which the cache directory checks
against the incoming address tag bits to determine if there is a cache
hit or not. This relationship is illustrated in Figure 2.2.1.1, Cache
tags.

When there are multiple ways, this check must happen in parallel
within each way, which then passes its result into a multiplexor which
outputs a final hit or miss result. As describe above, the more
associative a cache is, the less bits are required for index and the
more as tag bits — to the extreme of a fully-associative cache where
no bits are used as index bits. The parallel matching of tags bits is the
expensive component of cache design and generally the limiting
factor on how many lines (i.e, how big) a cache may grow.

3 Peripherals and buses
Peripherals are any of the many external devices that connect to your
computer. Obviously, the processor must have some way of talking to
the peripherals to make them useful.

The communication channel between the processor and the
peripherals is called a bus.

3.1 Peripheral Bus concepts
A device requires both input and output to be useful. There are a
number of common concepts required for useful communication with
peripherals.

3.1.1 Interrupts
An interrupt allows the device to literally interrupt the processor to
flag some information. For example, when a key is pressed, an
interrupt is generated to deliver the key-press event to the operating
system. Each device is assigned an interrupt by some combination of
the operating system and BIOS.

Devices are generally connected to an programmable interrupt
controller (PIC), a separate chip that is part of the motherboard
which buffers and communicates interrupt information to the main
processor. Each device has a physical interrupt line between it an one
of the PIC's provided by the system. When the device wants to
interrupt, it will modify the voltage on this line.

Computer Science from the Bottom Up

78

A very broad description of the PIC's role is that it receives this
interrupt and converts it to a message for consumption by the main
processor. While the exact procedure varies by architecture, the
general principle is that the operating system has configured an
interrupt descriptor table which pairs each of the possible interrupts
with a code address to jump to when the interrupt is received. This is
illustrated in Figure 3.1.1.1, Overview of handling an interrupt.

Writing this interrupt handler is the job of the device driver author in
conjunction with the operating system.

PIC

IDT

CPU

Device

A generic overview of handling an interrupt. The device raises the interrupt
to the interrupt controller, which passes the information onto the processor.
The processor looks at its descriptor table, filled out by the operating
system, to find the code to handle the fault.

Figure 3.1.1.1 Overview of handling an interrupt

Most drivers will split up handling of interrupts into bottom and top
halves. The bottom half will acknowledge the interrupt, queue actions
for processing and return the processor to what it was doing quickly.
The top half will then run later when the CPU is free and do the more
intensive processing. This is to stop an interrupt hogging the entire
CPU.

3.1.1.1 Saving state

Since an interrupt can happen at any time, it is important that you
can return to the running operation when finished handling the
interrupt. It is generally the job of the operating system to ensure
that upon entry to the interrupt handler, it saves any state; i.e.
registers, and restores them when returning from the interrupt
handler. In this way, apart from some lost time, the interrupt is

Computer Science from the Bottom Up

79

completely transparent to whatever happens to be running at the
time.

3.1.1.2 Interrupts v traps and exceptions

While an interrupt is generally associated with an external event from
a physical device, the same mechanism is useful for handling internal
system operations. For example, if the processor detects conditions
such as an access to invalid memory, an attempt to divide-by-zero or
an invalid instruction, it can internally raise an exception to be
handled by the operating system. It is also the mechanism used to
trap into the operating system for system calls, as discussed in
Section 3, System Calls and to implement virtual memory, as
discussed in Chapter 6, Virtual Memory. Although generated
internally rather than from an external source, the principles of
asynchronously interrupting the running code remains the same.

3.1.1.3 Types of interrupts

There are two main ways of signalling interrupts on a line — level and
edge triggered.

Level-triggered interrupts define voltage of the interrupt line being
held high to indicate an interrupt is pending. Edge-triggered
interrupts detect transitions on the bus; that is when the line voltage
goes from low to high. With an edge-triggered interrupt, a square-
wave pulse is detected by the PIC as signalling and interrupt has
been raised.

The difference is pronounced when devices share an interrupt line. In
a level-triggered system, the interrupt line will be high until all
devices that have raised an interrupt have been processed and un-
asserted their interrupt.

In an edge-triggered system, a pulse on the line will indicate to the
PIC that an interrupt has occurred, which it will signal to the
operating system for handling. However, if further pulses come in on
the already asserted line from another device.

The issue with level-triggered interrupts is that it may require some
considerable amount of time to handle an interrupt for a device.
During this time, the interrupt line remains high and it is not possible
to determine if any other device has raised an interrupt on the line.
This means there can be considerable unpredictable latency in
servicing interrupts.

With edge-triggered interrupts, a long-running interrupt can be
noticed and queued, but other devices sharing the line can still
transition (and hence raise interrupts) while this happens. However,

Computer Science from the Bottom Up

80

this introduces new problems; if two devices interrupt at the same
time it may be possible to miss one of the interrupts, or
environmental or other interference may create a spurious interrupt
which should be ignored.

3.1.1.4 Non-maskable interrupts

It is important for the system to be able to mask or prevent interrupts
at certain times. Generally, it is possible to put interrupts on hold, but
a particular class of interrupts, called non-maskable interrupts (NMI),
are the exception to this rule. The typical example is the reset
interrupt.

NMIs can be useful for implementing things such as a system
watchdog, where a NMI is raised periodically and sets some flag that
must be acknowledged by the operating system. If the
acknowledgement is not seen before the next periodic NMI, then
system can be considered to be not making forward progress.
Another common usage is for profiling a system. A periodic NMI can
be raised and used to evaluate what code the processor is currently
running; over time this builds a profile of what code is being run and
create a very useful insight into system performance.

3.1.2 IO Space
Obviously the processor will need to communicate with the peripheral
device, and it does this via IO operations. The most common form of
IO is so called memory mapped IO where registers on the device are
mapped into memory.

This means that to communicate with the device, you need simply
read or write to a specific address in memory. TODO: expand

3.2 DMA
Since the speed of devices is far below the speed of processors, there
needs to be some way to avoid making the CPU wait around for data
from devices.

Direct Memory Access (DMA) is a method of transferring data
directly between an peripheral and system RAM.

The driver can setup a device to do a DMA transfer by giving it the
area of RAM to put its data into. It can then start the DMA transfer
and allow the CPU to continue with other tasks.

Once the device is finished, it will raise an interrupt and signal to the

Computer Science from the Bottom Up

81

driver the transfer is complete. From this time the data from the
device (say a file from a disk, or frames from a video capture card) is
in memory and ready to be used.

3.3 Other Buses
Other buses connect between the PCI bus and external devices.

3.3.1 USB
From an operating system point of view, a USB device is a group of
end-points grouped together into an interface. An end-point can be
either in or out and hence transfers data in one direction only. End-
points can have a number of different types:

• Control end-points are for configuring the device, etc.

• Interrupt end-points are for transferring small amounts of data.
They have higher priority than ...

• Bulk end-points, which transfer large amounts of data but do
not get guaranteed time constraints.

• Isochronous transfers are high-priority real-time transfers, but
if they are missed they are not re-tried. This is for streaming
data like video or audio where there is no point sending data
again.

There can be many interfaces (made of multiple end-points) and
interfaces are grouped into configurations. However most devices
only have a single configuration.

Computer Science from the Bottom Up

82

Base Index
2111231

Frame
Counter

Frame List

Isochronous
Transfer Descriptors

Horizontal Execution

Queue Heads

Execution By Breadth
(Horizontal Execution)

Execution
By Depth
(Vertical
Execution)

Link
Pointer

Element
Link
Pointer

Link
Pointer

Element
Link
Pointer

Element
Link
Pointer

TQ
TQ

TQ

Frame Pointer
Frame Pointer

Frame Pointer

Q=Transfer Descriptor or Queue Head
T=Terminate

Frame List Base
Address Register

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD TD TD

TD TD TD QHQHQH

00

Link
Pointer

Element
Link
Pointer

TD

TD

TD

QH

TD

TD

TD

TQFrame Pointer

TD TD TD

Interrupt Control and Bulk
Queue Heads

An overview of a UCHI controller, taken from Intel documentation
(http://download.intel.com/technology/usb/UHCI11D.pdf).

Figure 3.3.1.1 Overview of a UHCI controller operation

Figure 3.3.1.1, Overview of a UHCI controller operation shows an
overview of a universal host controller interface, or UHCI. It provides
an overview of how USB data is moved out of the system by a
combination of hardware and software. Essentially, the software sets
up a template of data in a specified format for the host controller to
read and send across the USB bus.

Starting at the top-left of the overview, the controller has a frame
register with a counter which is incremented periodically — every
millisecond. This value is used to index into a frame list created by
software. Each entry in this table points to a queue of transfer
descriptors. Software sets up this data in memory, and it is read by
the host controller which is a separate chip the drives the USB bus.
Software needs to schedule the work queues so that 90% of a frame
time is given to isochronous data, and 10% left for interrupt, control
and bulk data..

As you can see from the diagram, the way the data is linked means
that transfer descriptors for isochronous data are associated with
only one particular frame pointer — in other words only one
particular time period — and after that will be discarded. However,

Computer Science from the Bottom Up

83

http://download.intel.com/technology/usb/UHCI11D.pdf

the interrupt, control and bulk data are all queued after the
isochronous data and thus if not transmitted in one frame (time
period) will be done in the next.

The USB layer communicates through USB request blocks, or URBs.
A URB contains information about what end-point this request relates
to, data, any related information or attributes and a call-back function
to be called when the URB is complete. USB drivers submit URBs in a
fixed format to the USB core, which manages them in co-ordination
with the USB host controller as above. Your data gets sent off to the
USB device by the USB core, and when its done your call-back is
triggered.

4 Small to big systems
As Moore's law has predicted, computing power has been growing at
a furious pace and shows no signs of slowing down. It is relatively
uncommon for any high end servers to contain only a single CPU. This
is achieved in a number of different fashions.

4.1 Symmetric Multi-Processing
Symmetric Multi-Processing, commonly shortened to SMP, is
currently the most common configuration for including multiple CPUs
in a single system.

The symmetric term refers to the fact that all the CPUs in the system
are the same (e.g. architecture, clock speed). In a SMP system there
are multiple processors that share other all other system resources
(memory, disk, etc).

4.1.1 Cache Coherency
For the most part, the CPUs in the system work independently; each
has its own set of registers, program counter, etc. Despite running
separately, there is one component that requires strict
synchronisation.

This is the CPU cache; remember the cache is a small area of quickly
accessible memory that mirrors values stored in main system
memory. If one CPU modifies data in main memory and another CPU
has an old copy of that memory in its cache the system will obviously
not be in a consistent state. Note that the problem only occurs when
processors are writing to memory, since if a value is only read the
data will be consistent.

Computer Science from the Bottom Up

84

To co-ordinate keeping the cache coherent on all processors an SMP
system uses snooping. Snooping is where a processor listens on a bus
which all processors are connected to for cache events, and updates
its cache accordingly.

One protocol for doing this is the MOESI protocol; standing for
Modified, Owner, Exclusive, Shared, Invalid. Each of these is a state
that a cache line can be in on a processor in the system. There are
other protocols for doing as much, however they all share similar
concepts. Below we examine MOESI so you have an idea of what the
process entails.

When a processor requires reading a cache line from main memory, it
firstly has to snoop all other processors in the system to see if they
currently know anything about that area of memory (e.g. have it
cached). If it does not exist in any other process, then the processor
can load the memory into cache and mark it as exclusive. When it
writes to the cache, it then changes state to be modified. Here the
specific details of the cache come into play; some caches will
immediately write back the modified cache to system memory (known
as a write-through cache, because writes go through to main
memory). Others will not, and leave the modified value only in the
cache until it is evicted, when the cache becomes full for example.

The other case is where the processor snoops and finds that the value
is in another processors cache. If this value has already been marked
as modified, it will copy the data into its own cache and mark it as
shared. It will send a message for the other processor (that we got
the data from) to mark its cache line as owner. Now imagine that a
third processor in the system wants to use that memory too. It will
snoop and find both a shared and a owner copy; it will thus take its
value from the owner value. While all the other processors are only
reading the value, the cache line stays shared in the system.
However, when one processor needs to update the value it sends an
invalidate message through the system. Any processors with that
cache line must then mark it as invalid, because it not longer reflects
the "true" value. When the processor sends the invalidate message, it
marks the cache line as modified in its cache and all others will mark
as invalid (note that if the cache line is exclusive the processor knows
that no other processor is depending on it so can avoid sending an
invalidate message).

From this point the process starts all over. Thus whichever processor
has the modified value has the responsibility of writing the true value
back to RAM when it is evicted from the cache. By thinking through
the protocol you can see that this ensures consistency of cache lines
between processors.

There are several issues with this system as the number of processors
starts to increase. With only a few processors, the overhead of

Computer Science from the Bottom Up

85

checking if another processor has the cache line (a read snoop) or
invalidating the data in every other processor (invalidate snoop) is
manageable; but as the number of processors increase so does the
bus traffic. This is why SMP systems usually only scale up to around 8
processors.

Having the processors all on the same bus starts to present physical
problems as well. Physical properties of wires only allow them to be
laid out at certain distances from each other and to only have certain
lengths. With processors that run at many gigahertz the speed of light
starts to become a real consideration in how long it takes messages to
move around a system.

Note that system software usually has no part in this process,
although programmers should be aware of what the hardware is
doing underneath in response to the programs they design to
maximise performance.

4.1.1.1 Cache exclusivity in SMP systems

In Section 2.2, Cache in depth we described inclusive v exclusive
caches. In general, L1 caches are usually inclusive — that is all data
in the L1 cache also resides in the L2 cache. In a multiprocessor
system, an inclusive L1 cache means that only the L2 cache need
snoop memory traffic to maintain coherency, since any changes in L2
will be guaranteed to be reflected by L1. This reduces the complexity
of the L1 and de-couples it from the snooping process allowing it to
be faster.

Again, in general, most all modern high-end (e.g. not targeted at
embedded) processors have a write-through policy for the L1 cache,
and a write-back policy for the lower level caches. There are several
reasons for this. Since in this class of processors L2 caches are
almost exclusively on-chip and generally quite fast the penalties from
having L1 write-through are not the major consideration. Further,
since L1 sizes are small, pools of written data unlikely to be read in
the future could cause pollution of the limited L1 resource.
Additionally, a write-through L1 does not have to be concerned if it
has outstanding dirty data, hence can pass the extra coherency logic
to the L2 (which, as we mentioned, already has a larger part to play
in cache coherency).

4.1.2 Hyperthreading
Much of the time of a modern processor is spent waiting for much
slower devices in the memory hierarchy to deliver data for
processing.

Thus strategies to keep the pipeline of the processor full are

Computer Science from the Bottom Up

86

paramount. One strategy is to include enough registers and state
logic such that two instruction streams can be processed at the same
time. This makes one CPU look for all intents and purposes like two
CPUs.

While each CPU has its own registers, they still have to share the
core logic, cache and input and output bandwidth from the CPU to
memory. So while two instruction streams can keep the core logic of
the processor busier, the performance increase will not be as great
has having two physically separate CPUs. Typically the performance
improvement is below 20% (XXX check), however it can be drastically
better or worse depending on the workloads.

4.1.3 Multi Core
With increased ability to fit more and more transistors on a chip, it
became possible to put two or more processors in the same physical
package. Most common is dual-core, where two processor cores are
in the same chip. These cores, unlike hyperthreading, are full
processors and so appear as two physically separate processors a la a
SMP system.

While generally the processors have their own L1 cache, they do have
to share the bus connecting to main memory and other devices. Thus
performance is not as great as a full SMP system, but considerably
better than a hyperthreading system (in fact, each core can still
implement hyperthreading for an additional enhancement).

Multi core processors also have some advantages not performance
related. As we mentioned, external physical buses between
processors have physical limits; by containing the processors on the
same piece of silicon extremely close to each other some of these
problems can be worked around. The power requirements for multi
core processors are much less than for two separate processors. This
means that there is less heat needing to be dissipated which can be a
big advantage in data centre applications where computers are
packed together and cooling considerations can be considerable. By
having the cores in the same physical package it makes muti-
processing practical in applications where it otherwise would not be,
such as laptops. It is also considerably cheaper to only have to
produce one chip rather than two.

4.2 Clusters
Many applications require systems much larger than the number of
processors a SMP system can scale to. One way of scaling up the
system further is a cluster.

Computer Science from the Bottom Up

87

A cluster is simply a number of individual computers which have
some ability to talk to each other. At the hardware level the systems
have no knowledge of each other; the task of stitching the individual
computers together is left up to software.

Software such as MPI allow programmers to write their software and
then "farm out" parts of the program to other computers in the
system. For example, image a loop that executes several thousand
times performing independent action (that is no iteration of the loop
affects any other iteration). With four computers in a cluster, the
software could make each computer do 250 loops each.

The interconnect between the computers varies, and may be as slow
as an internet link or as fast as dedicated, special buses (Infiniband).
Whatever the interconnect, however, it is still going to be further
down the memory hierarchy and much, much slower than RAM. Thus
a cluster will not perform well in a situation when each CPU requires
access to data that may be stored in the RAM of another computer;
since each time this happens the software will need to request a copy
of the data from the other computer, copy across the slow link and
into local RAM before the processor can get any work done.

However, many applications do not require this constant copying
around between computers. One large scale example is SETI@Home,
where data collected from a radio antenna is analysed for signs of
Alien life. Each computer can be distributed a few minutes of data to
analyse, and only needs report back a summary of what it found.
SETI@Home is effectively a very large, dedicated cluster.

Another application is rendering of images, especially for special
effects in films. Each computer can be handed a single frame of the
movie which contains the wire-frame models, textures and light
sources which needs to be combined (rendered) into the amazing
special effects we now take for grained. Since each frame is static,
once the computer has the initial input it does not need any more
communication until the final frame is ready to be sent back and
combined into the move. For example the block-buster Lord of the
Rings had their special effects rendered on a huge cluster running
Linux.

4.3 Non-Uniform Memory Access
Non-Uniform Memory Access, more commonly abbreviated to NUMA,
is almost the opposite of a cluster system mentioned above. As in a
cluster system it is made up of individual nodes linked together,
however the linkage between nodes is highly specialised (and
expensive!). As opposed to a cluster system where the hardware has
no knowledge of the linkage between nodes, in a NUMA system the

Computer Science from the Bottom Up

88

software has no (well, less) knowledge about the layout of the system
and the hardware does all the work to link the nodes together.

The term non uniform memory access comes from the fact that RAM
may not be local to the CPU and so data may need to be accessed
from a node some distance away. This obviously takes longer, and is in
contrast to a single processor or SMP system where RAM is directly
attached and always takes a constant (uniform) time to access.

4.3.1 NUMA Machine Layout
With so many nodes talking to each other in a system, minimising the
distance between each node is of paramount importance. Obviously it
is best if every single node has a direct link to every other node as
this minimises the distance any one node needs to go to find data.
This is not a practical situation when the number of nodes starts
growing into the hundreds and thousands as it does with large
supercomputers; if you remember your high school maths the
problem is basically a combination taken two at a time (each node
talking to another), and will grow n!/2*(n-2)! .

To combat this exponential growth alternative layouts are used to
trade off the distance between nodes with the interconnects required.
One such layout common in modern NUMA architectures is the
hypercube.

A hypercube has a strict mathematical definition (way beyond this
discussion) but as a cube is a 3 dimensional counterpart of a square,
so a hypercube is a 4 dimensional counterpart of a cube.

Computer Science from the Bottom Up

89

An example of a hypercube. Hypercubes provide a good trade off between
distance between nodes and number of interconnections required.

Figure 4.3.1.1 A Hypercube

Above we can see the outer cube contains four 8 nodes. The
maximum number of paths required for any node to talk to another
node is 3. When another cube is placed inside this cube, we now have
double the number of processors but the maximum path cost has only
increased to 4. This means as the number of processors grow by 2n

the maximum path cost grows only linearly.

Computer Science from the Bottom Up

90

4.3.2 Cache Coherency
Cache coherency can still be maintained in a NUMA system (this is
referred to as a cache-coherent NUMA system, or ccNUMA). As we
mentioned, the broadcast based scheme used to keep the processor
caches coherent in an SMP system does not scale to hundreds or even
thousands of processors in a large NUMA system. One common
scheme for cache coherency in a NUMA system is referred to as a
directory based model. In this model processors in the system
communicate to special cache directory hardware. The directory
hardware maintains a consistent picture to each processor; this
abstraction hides the working of the NUMA system from the
processor.

The Censier and Feautrier directory based scheme maintains a
central directory where each memory block has a flag bit known as
the valid bit for each processor and a single dirty bit. When a
processor reads the memory into its cache, the directory sets the
valid bit for that processor.

When a processor wishes to write to the cache line the directory
needs to set the dirty bit for the memory block. This involves sending
an invalidate message to those processors who are using the cache
line (and only those processors whose flag are set; avoiding broadcast
traffic).

After this should any other processor try to read the memory block
the directory will find the dirty bit set. The directory will need to get
the updated cache line from the processor with the valid bit currently
set, write the dirty data back to main memory and then provide that
data back to the requesting processor, setting the valid bit for the
requesting processor in the process. Note that this is transparent to
the requesting processor and the directory may need to get that data
from somewhere very close or somewhere very far away.

Obviously having thousands of processors communicating to a single
directory does also not scale well. Extensions to the scheme involve
having a hierarchy of directories that communicate between each
other using a separate protocol. The directories can use a more
general purpose communications network to talk between each other,
rather than a CPU bus, allowing scaling to much larger systems.

4.3.3 NUMA Applications
NUMA systems are best suited to the types of problems that require
much interaction between processor and memory. For example, in
weather simulations a common idiom is to divide the environment up
into small "boxes" which respond in different ways (oceans and land

Computer Science from the Bottom Up

91

reflect or store different amounts of heat, for example). As
simulations are run, small variations will be fed in to see what the
overall result is. As each box influences the surrounding boxes (e.g. a
bit more sun means a particular box puts out more heat, affecting the
boxes next to it) there will be much communication (contrast that
with the individual image frames for a rendering process, each of
which does not influence the other). A similar process might happen if
you were modelling a car crash, where each small box of the
simulated car folds in some way and absorbs some amount of energy.

Although the software has no directly knowledge that the underlying
system is a NUMA system, programmers need to be careful when
programming for the system to get maximum performance. Obviously
keeping memory close to the processor that is going to use it will
result in the best performance. Programmers need to use techniques
such as profiling to analyse the code paths taken and what
consequences their code is causing for the system to extract best
performance.

4.4 Memory ordering, locking and atomic
operations
The multi-level cache, superscalar multi-processor architecture
brings with it some interesting issues relating to how a programmer
sees the processor running code.

Imagine program code is running on two processors simultaneously,
both processors sharing effectively one large area of memory. If one
processor issues a store instruction, to put a register value into
memory, when can it be sure that the other processor does a load of
that memory it will see the correct value?

In the simplest situation the system could guarantee that if a program
executes a store instruction, any subsequent load instructions will see
this value. This is referred to as strict memory ordering, since the
rules allow no room for movement. You should be starting to realise
why this sort of thing is a serious impediment to performance of the
system.

Much of the time, the memory ordering is not required to be so strict.
The programmer can identify points where they need to be sure that
all outstanding operations are seen globally, but in between these
points there may be many instructions where the semantics are not
important.

Take, for example, the following situation.

Computer Science from the Bottom Up

92

1 typedef struct {
int a;
int b;
} a_struct;

5
/*
* Pass in a pointer to be allocated as a new structure
*/

void get_struct(a_struct *new_struct)
10 {

void *p = malloc(sizeof(a_struct));

/* We don't particularly care what order the following two
* instructions end up acutally executing in */

15 p->a = 100;
p->b = 150;

/* However, they must be done before this instruction.
* Otherwise, another processor who looks at the value of p

20 * could find it pointing into a structure whose values have
* not been filled out.
*/

new_struct = p;
}

Example 4.4.1 Memory Ordering

In this example, we have two stores that can be done in any particular
order, as it suits the processor. However, in the final case, the pointer
must only be updated once the two previous stores are known to have
been done. Otherwise another processor might look at the value of p ,
follow the pointer to the memory, load it, and get some completely
incorrect value!

Computer Science from the Bottom Up

93

To indicate this, loads and stores have to have semantics that
describe what behaviour they must have. Memory semantics are
described in terms of fences that dictate how loads and stores may be
reordered around the load or store.

By default, a load or store can be re-ordered anywhere.

Acquire semantics is like a fence that only allows load and stores to
move downwards through it. That is, when this load or store is
complete you can be guaranteed that any later load or stores will see
the value (since they can not be moved above it).

Release semantics is the opposite, that is a fence that allows any load
or stores to be done before it (move upwards), but nothing before it to
move downwards past it. Thus, when load or store with release
semantics is processed, you can be store that any earlier load or
stores will have been complete.

Computer Science from the Bottom Up

94

Store

Load

Load

Load

Store

Store

Load

Store

Store

Load

Load

Load

Load

All later operations must be able to
see the result of this operation.

All ealier operations must be complete
before this operation completes.

Invalid Reordering

Valid Reordering

Store

Load

Acquire

Release

An illustration of valid reorderings around operations with acquire and
release semantics.

Figure 4.4.1 Acquire and Release semantics

A full memory fence is a combination of both; where no loads or
stores can be reordered in any direction around the current load or
store.

The strictest memory model would use a full memory fence for every
operation. The weakest model would leave every load and store as a

Computer Science from the Bottom Up

95

normal re-orderable instruction.

4.4.1 Processors and memory models
Different processors implement different memory models.

The x86 (and AMD64) processor has a quite strict memory model; all
stores have release semantics (that is, the result of a store is
guaranteed to be seen by any later load or store) but all loads have
normal semantics. lock prefix gives memory fence.

Itanium allows all load and stores to be normal, unless explicitly told.
XXX

4.4.2 Locking
Knowing the memory ordering requirements of each architecture is
not practical for all programmers, and would make programs difficult
to port and debug across different processor types.

Programmers use a higher level of abstraction called locking to allow
simultaneous operation of programs when there are multiple CPUs.

When a program acquires a lock over a piece of code, no other
processor can obtain the lock until it is released. Before any critical
pieces of code, the processor must attempt to take the lock; if it can
not have it, it does not continue.

You can see how this is tied into the naming of the memory ordering
semantics in the previous section. We want to ensure that before we
acquire a lock, no operations that should be protected by the lock are
re-ordered before it. This is how acquire semantics works.

Conversely, when we release the lock, we must be sure that every
operation we have done whilst we held the lock is complete
(remember the example of updating the pointer previously?). This is
release semantics.

There are many software libraries available that allow programmers
to not have to worry about the details of memory semantics and
simply use the higher level of abstraction of lock() and unlock() .

4.4.2.1 Locking difficulties

Locking schemes make programming more complicated, as it is
possible to deadlock programs. Imagine if one processor is currently
holding a lock over some data, and is currently waiting for a lock for
some other piece of data. If that other processor is waiting for the

Computer Science from the Bottom Up

96

lock the first processor holds before unlocking the second lock, we
have a deadlock situation. Each processor is waiting for the other and
neither can continue without the others lock.

Often this situation arises because of a subtle race condition; one of
the hardest bugs to track down. If two processors are relying on
operations happening in a specific order in time, there is always the
possibility of a race condition occurring. A gamma ray from an
exploding star in a different galaxy might hit one of the processors,
making it skip a beat, throwing the ordering of operations out. What
will often happen is a deadlock situation like above. It is for this
reason that program ordering needs to be ensured by semantics, and
not by relying on one time specific behaviours. (XXX not sure how i
can better word that).

A similar situation is the opposite of deadlock, called livelock. One
strategy to avoid deadlock might be to have a "polite" lock; one that
you give up to anyone who asks. This politeness might cause two
threads to be constantly giving each other the lock, without either
ever taking the lock long enough to get the critical work done and be
finished with the lock (a similar situation in real life might be two
people who meet at a door at the same time, both saying "no, you
first, I insist". Neither ends up going through the door!).

4.4.2.2 Locking strategies

Underneath, there are many different strategies for implementing the
behaviour of locks.

A simple lock that simply has two states - locked or unlocked, is
referred to as a mutex (short for mutual exclusion; that is if one
person has it the other can not have it).

There are, however, a number of ways to implement a mutex lock. In
the simplest case, we have what its commonly called a spinlock. With
this type of lock, the processor sits in a tight loop waiting to take the
lock; equivalent to it saying "can I have it now" constantly much as a
young child might ask of a parent.

The problem with this strategy is that it essentially wastes time.
Whilst the processor is sitting constantly asking for the lock, it is not
doing any useful work. For locks that are likely to be only held locked
for a very short amount of time this may be appropriate, but in many
cases the amount of time the lock is held might be considerably
longer.

Thus another strategy is to sleep on a lock. In this case, if the
processor can not have the lock it will start doing some other work,
waiting for notification that the lock is available for use (we see in
future chapters how the operating system can switch processes and

Computer Science from the Bottom Up

97

give the processor more work to do).

A mutex is however just a special case of a semaphore, famously
invented by the Dutch computer scientist Dijkstra. In a case where
there are multiple resources available, a semaphore can be set to
count accesses to the resources. In the case where the number of
resources is one, you have a mutex. The operation of semaphores can
be detailed in any algorithms book.

These locking schemes still have some problems however. In many
cases, most people only want to read data which is updated only
rarely. Having all the processors wanting to only read data require
taking a lock can lead to lock contention where less work gets done
because everyone is waiting to obtain the same lock for some data.

4.4.3 Atomic Operations
Explain what it is.

Chapter 4. The Operating
System
1 The role of the operating
system
The operating system underpins the entire operation of the modern
computer.

1.1 Abstraction of hardware
The fundamental operation of the operating system (OS) is to abstract
the hardware to the programmer and user. The operating system
provides generic interfaces to services provided by the underlying
hardware.

In a world without operating systems, every programmer would need
to know the most intimate details of the underlying hardware to get
anything to run. Worse still, their programs would not run on other
hardware, even if that hardware has only slight differences.

Computer Science from the Bottom Up

98

1.2 Multitasking
We expect modern computers to do many different things at once,
and we need some way to arbitrate between all the different
programs running on the system. It is the operating systems job to
allow this to happen seamlessly.

The operating system is responsible for resource management within
the system. Many tasks will be competing for the resources of the
system as it runs, including processor time, memory, disk and user
input. The job of the operating system is to arbitrate these resources
to the multiple tasks and allow them access in an orderly fashion. You
have probably experienced when this fails as it usually ends up with
your computer crashing (the famous "blue screen of death" for
example).

1.3 Standardised Interfaces
Programmers want to write programs that will run on as many
different hardware platforms as possible. By having operating system
support for standardised interfaces, programmers can get this
functionality.

For example, if the function to open a file on one system is open() , on
another is open_file() and on yet another openf() programmers will
have the dual problem of having to remember what each system does
and their programs will not work on multiple systems.

The Portable Operating System Interface (POSIX)1

The X comes from Unix, from which the standard grew. Today, POSIX
is the same thing as the Single UNIX Specification Version 3 or ISO/
IEC 9945:2002. This is a free standard, available online.

Once upon a time, the Single UNIX specification and the POSIX
Standards were separate entities. The Single UNIX specification was
released by a consortium called the "Open Group", and was freely
available as per their requirements. The latest version is The Single
Unix Specification Version 3.

The IEEE POSIX standards were released as IEEE Std 1003.[insert
various years, revisions here], and were not freely available. The
latest version is IEEE 1003.1-2001 and is equivalent to the Single
Unix Specification Version 3.

Thus finally the two separate standards were merged into what is
known as the Single UNIX Specification Version 3, which is also

1.

Computer Science from the Bottom Up

99

standardised by the ISO under ISO/IEC 9945:2002. This happened
early in 2002. So when people talk about POSIX, SUS3 or ISO/IEC
9945:2002 they all mean the same thing!

is a very important standard implemented by UNIX type operating
systems. Microsoft Windows has similar proprietary standards.

1.4 Security
On multi-user systems, security is very important. As the arbitrator of
access to the system the operating system is responsible for ensuring
that only those with the correct permissions can access resources.

For example if a file is owned by one user, another user should not be
allowed to open and read it. However there also need to be
mechanisms to share that file safely between the users should they
want it.

Operating systems are large and complex programs, and often
security issues will be found. Often a virus or worm will take
advantage of these bugs to access resources it should not be allowed
to, such as your files or network connection; to fight them you must
install patches or updates provided by your operating system vendor.

1.5 Performance
As the operating system provides so many services to the computer,
its performance is critical. Many parts of the operating system run
extremely frequently, so even an overhead of just a few processor
cycles can add up to a big decrease in overall system performance.

The operating system needs to exploit the features of the underlying
hardware to make sure it is getting the best possible performance for
the operations, and consequently systems programmers need to
understand the intimate details of the architecture they are building
for.

In many cases the systems programmers job is about deciding on
policies for the system. Often the case that the side effects of making
one part of the operating system run faster will make another part
run slower or less efficiently. Systems programmers need to
understand all these trade offs when they are building their operating
system.

Computer Science from the Bottom Up

100

2 Operating System
Organisation
The operating system is roughly organised as in the figure below.

Computer Science from the Bottom Up

101

Ta
sk

 1

Ta
sk

 n
Kernel

Userspace

Ta
sk

 1

Drivers

Hardware

The organisation of the kernel. Processes the kernel is running live in
userspace, and the kernel talks both directly to hardware and through
drivers.

Figure 2.1 The Operating System

2.1 The Kernel
The kernel is the operating system. As the figure illustrates, the
kernel communicates to hardware both directly and through drivers.

Just as the kernel abstracts the hardware to user programs, drivers
abstract hardware to the kernel. For example there are many
different types of graphic card, each one with slightly different

Computer Science from the Bottom Up

102

features. As long as the kernel exports an API, people who have
access to the specifications for the hardware can write drivers to
implement that API. This way the kernel can access many different
types of hardware.

The kernel is generally what we called privileged. As you will learn,
the hardware has important roles to play in running multiple tasks
and keeping the system secure, but these rules do not apply to the
kernel. We know that the kernel must handle programs that crash
(remember it is the operating system's job arbitrate between multiple
programs running on the same system, and there is no guarantee that
they will behave), but if any internal part of the operating system
crashes, chances are the entire system will become useless. Similarly
security issues can be exploited by user processes to escalate
themselves to the privilege level of the kernel; at that point they can
access any part of the system completely unchecked.

2.1.1 Monolithic v Microkernels
One debate that is often comes up surrounding operating systems is
whether the kernel should be a microkernel or monolithic.

The monolithic approach is the most common, as taken by most
common Unixes (such as Linux). In this model the core privileged
kernel is large, containing hardware drivers, file system accesses
controls, permissions checking and services such as Network File
System (NFS).

Since the kernel is always privileged, if any part of it crashes the
whole system has the potential to come to a halt. If one driver has a
bug, it can overwrite any memory in the system with no problems,
ultimately causing the system to crash.

A microkernel architecture tries to minimise this possibility by
making the privileged part of the kernel as small as possible. This
means that most of the system runs as unprivileged programs,
limiting the harm that any one crashing component can influence. For
example, drivers for hardware can run in separate processes, so if
one goes astray it can not overwrite any memory but that allocated to
it.

Whilst this sounds like the most obvious idea, the problem comes
back two main issues

1. Performance is decreased. Talking between many different
components can decrease performance.

2. It is slightly more difficult for the programmer.

Computer Science from the Bottom Up

103

Both of these criticisms come because to keep separation between
components most microkernels are implemented with a message
passing based system, commonly referred to as inter-process
communication or IPC. Communicating between individual
components happens via discrete messages which must be bundled
up, sent to the other component, unbundled, operated upon, re-
bundled up and sent back, and then unbundled again to get the
result.

This is a lot of steps for what might be a fairly simple request from a
foreign component. Obviously one request might make the other
component do more requests of even more components, and the
problem can multiply. Slow message passing implementations were
largely responsible for the poor performance of early microkernel
systems, and the concepts of passing messages are slightly harder for
programmers to program for. The enhanced protection from having
components run separately was not sufficient to overcome these
hurdles in early microkernel systems, so they fell out of fashion.

In a monolithic kernel, calls between components are simple function
calls, as all programmers are familiar with.

There is no definitive answer as to which is the best organisation, and
it has started many arguments in both academic and non-academic
circles. Hopefully as you learn more about operating systems you will
be able to make up your own mind!

2.1.1.1 Modules

The Linux kernel implements a module system, where drivers can be
loaded into the running kernel "on the fly" as they are required. This
is good in that drivers, which make up a large part of operating
system code, are not loaded for devices that are not present in the
system. Someone who wants to make the most generic kernel
possible (i.e. runs on lots of different hardware, such as RedHat or
Debian) can include most drivers as modules which are only loaded if
the system it is running on has the hardware available.

However, the modules are loaded directly in the privileged kernel and
operate at the same privilege level as the rest of the kernel, so the
system is still considered a monolithic kernel.

2.1.2 Virtualisation
Closely related to kernel is the concept of virtualisation of hardware.
Modern computers are very powerful, and often it is useful to not
think of them as one whole system but split a single physical
computer up into separate "virtual" machines. Each of these virtual
machines looks for all intents and purposes as a completely separate

Computer Science from the Bottom Up

104

machine, although physically they are all in the same box, in the same
place.

Computer Science from the Bottom Up

105

Memory

Memory CPUs Disk

Operating System

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

O
perating System

G
uest

Application

Virtual
Hardware

O
perating System

G
uest

Application

Virtual
Hardware

Memory CPUs Disk

A
pplication

Virtual Machine Monitor

Some different virtualisation methods.

Figure 2.1.2.1 The Operating System

This can be organised in many different ways. In the simplest case, a
small virtual machine monitor can run directly on the hardware and
provide an interface to the guest operating systems running on top.

Computer Science from the Bottom Up

106

This VMM is often often called a hypervisor (from the word
"supervisor")1. In fact, the operating system on top may have no idea
that the hypervisor is even there at all, as the hypervisor presents
what appears to be a complete system. It intercepts operations
between the guest operating system and hardware and only presents
a subset of the system resources to each.

This is often used on large machines (with many CPUs and much
RAM) to implement partitioning. This means the machine can be split
up into smaller virtual machines. Often you can allocate more
resources to running systems on the fly, as requirements dictate. The
hypervisors on many large IBM machines are actually quite
complicated affairs, with many millions of lines of code. It provides a
multitude of system management services.

Another option is to have the operating system be aware of the
underlying hypervisor, and request system resources through it. This
is sometimes referred to as paravirtualisation due to its halfway
nature. This is similar to the way early versions of the Xen system
work and is a compromise solution. It hopefully provides better
performance since the operating system is explicitly asking for
system resources from the hypervisor when required, rather than the
hypervisor having to work things out dynamically.

Finally, you may have a situation where an application running on top
of the existing operating system presents a virtualised system
(including CPU, memory, BIOS, disk, etc) which a plain operating
system can run on. The application converts the requests to hardware
through to the underlying hardware via the existing operating
system. This is similar to how VMWare works. This approach has
many overheads, as the application process has to emulate an entire
system and convert everything to requests from the underlying
operating system. However, this lets you emulate an entirely different
architecture all together, as you can dynamically translate the
instructions from one processor type to another (as the Rosetta
system does with Apple software which moved from the PowerPC
processor to Intel based processors).

Performance is major concern when using any of these virtualisation
techniques, as what were once fast operations directly on hardware
need to make their way through layers of abstraction.

Intel have discussed hardware support for virtualisation soon to be
coming in their latest processors. These extensions work by raising a
special exception for operations that might require the intervention of
a virtual machine monitor. Thus the processor looks the same as a

1. In fact, the hypervisor shares much in common with a micro-kernel;
both strive to be small layers to present the hardware in a safe fashion
to layers above it.

Computer Science from the Bottom Up

107

non-virtualised processor to the application running on it, but when
that application makes requests for resources that might be shared
between other guest operating systems, the virtual machine monitor
can be invoked.

This provides superior performance because the virtual machine
monitor does not need to monitor every operation to see if it is safe,
but can wait until the processor notifies that something unsafe has
happened.

2.1.2.1 Covert Channels

This is a digression, but an interesting security flaw relating to
virtualised machines. If the partitioning of the system is not static,
but rather dynamic, there is a potential security issue involved.

In a dynamic system, resources are allocated to the operating
systems running on top as required. Thus if one is doing particularly
CPU intensive operations whilst the other is waiting on data to come
from disks, more of the CPU power will be given to the first task. In a
static system, each would get 50% an the unused portion would go to
waste.

Dynamic allocation actually opens up a communications channel
between the two operating systems. Anywhere that two states can be
indicated is sufficient to communicate in binary. Imagine both systems
are extremely secure, and no information should be able to pass
between one and the other, ever. Two people with access could
collude to pass information between themselves by writing two
programs that try to take large amounts of resources at the same
time.

When one takes a large amount of memory there is less available for
the other. If both keep track of the maximum allocations, a bit of
information can be transferred. Say they make a pact to check every
second if they can allocate this large amount of memory. If the target
can, that is considered binary 0, and if it can not (the other machine
has all the memory), that is considered binary 1. A data rate of one bit
per second is not astounding, but information is flowing.

This is called a covert channel, and whilst admittedly far-fetched
there have been examples of security breaches from such
mechanisms. It just goes to show that the life of a systems
programmer is never simple!

2.2 Userspace
We call the theoretical place where programs are run by the user

Computer Science from the Bottom Up

108

userspace. Each program runs in userspace, talking to the kernel
through system calls (discussed below).

As previously discussed, userspace is unprivileged. User programs
can only do a limited range of things, and should never be able to
crash other programs, even if they crash themselves.

3 System Calls
3.1 Overview
System calls are how userspace programs interact with the kernel.
The general principle behind how they work is described below.

3.1.1 System call numbers
Each and every system call has a system call number which is known
by both the userspace and the kernel. For example, both know that
system call number 10 is open() , system call number 11 is read() ,
etc.

The Application Binary Interface (ABI) is very similar to an API but
rather than being for software is for hardware. The API will define
which register the system call number should be put in so the kernel
can find it when it is asked to do the system call.

3.1.2 Arguments
System calls are no good without arguments; for example open()
needs to tell the kernel exactly what file to open. Once again the ABI
will define which registers arguments should be put into for the
system call.

3.1.3 The trap
To actually perform the system call, there needs to be some way to
communicate to the kernel we wish to make a system call. All
architectures define an instruction, usually called break or something
similar, that signals to the hardware we wish to make a system call.

Specifically, this instruction will tell the hardware to modify the
instruction pointer to point to the kernels system call handler (when
the operating system sets its self up it tells the hardware where its
system call handler lives). So once the userspace calls the break

Computer Science from the Bottom Up

109

instruction, it has lost control of the program and passed it over to
the kernel.

The rest of the operation is fairly straight forward. The kernel looks in
the predefined register for the system call number, and looks it up in
a table to see which function it should call. This function is called,
does what it needs to do, and places its return value into another
register defined by the ABI as the return register.

The final step is for the kernel to make a jump instruction back to the
userspace program, so it can continue off where it left from. The
userpsace program gets the data it needs from the return register,
and continues happily on its way!

Although the details of the process can get quite hairy, this is
basically all their is to a system call.

3.1.4 libc
Although you can do all of the above by hand for each system call,
system libraries usually do most of the work for you. The standard
library that deals with system calls on UNIX like systems is libc ; we
will learn more about its roles in future weeks.

3.2 Analysing a system call
As the system libraries usually deal with making systems call for you,
we need to do some low level hacking to illustrate exactly how the
system calls work.

We will illustrate how probably the most simple system call,
getpid() , works. This call takes no arguments and returns the ID of

the currently running program (or process; we'll look more at the
process in later weeks).

Computer Science from the Bottom Up

110

1 #include <stdio.h>

/* for syscall() */
#include <sys/syscall.h>

5 #include <unistd.h>

/* system call numbers */
#include <asm/unistd.h>

10 void function(void)
{

int pid;

pid = __syscall(__NR_getpid);
15 }

Example 3.2.1 getpid() example

We start by writing a small C program which we can start to illustrate
the mechanism behind system calls. The first thing to note is that
there is a syscall argument provided by the system libraries for
directly making system calls. This provides an easy way for
programmers to directly make systems calls without having to know
the exact assembly language routines for making the call on their
hardware. So why do we use getpid() at all? Firstly, it is much
clearer to use a symbolic function name in your code. However, more
importantly, getpid() may work in very different ways on different
systems. For example, on Linux the getpid() call can be cached, so if
it is run twice the system library will not take the penalty of having to
make an entire system call to find out the same information again.

By convention under Linux, system calls numbers are defined in the
asm/unistd.h file from the kernel source. Being in the asm

subdirectory, this is different for each architecture Linux runs on.
Again by convention, system calls numbers are given a #define name
consisting of __NR_ . Thus you can see our code will be making the
getpid system call, storing the value in pid .

We will have a look at how several architectures implement this code

Computer Science from the Bottom Up

111

under the hood. We're going to look at real code, so things can get
quite hairy. But stick with it -- this is exactly how your system works!

3.2.1 PowerPC
PowerPC is a RISC architecture common in older Apple computers,
and the core of devices such as the latest version of the Xbox.

Computer Science from the Bottom Up

112

1
/* On powerpc a system call basically clobbers the same registers like a
* function call, with the exception of LR (which is needed for the
* "sc; bnslr" sequence) and CR (where only CR0.SO is clobbered to signal

5 * an error return status).
*/

#define __syscall_nr(nr, type, name, args...) \
unsigned long __sc_ret, __sc_err; \

10 { \
register unsigned long __sc_0 __asm__ ("r0"); \
register unsigned long __sc_3 __asm__ ("r3"); \
register unsigned long __sc_4 __asm__ ("r4"); \
register unsigned long __sc_5 __asm__ ("r5"); \

15 register unsigned long __sc_6 __asm__ ("r6"); \
register unsigned long __sc_7 __asm__ ("r7"); \

__sc_loadargs_##nr(name, args); \
__asm__ __volatile__ \

20 ("sc \n\t" \
"mfcr %0 " \

: "=&r" (__sc_0), \
"=&r" (__sc_3), "=&r" (__sc_4), \
"=&r" (__sc_5), "=&r" (__sc_6), \

25 "=&r" (__sc_7) \
: __sc_asm_input_##nr \
: "cr0", "ctr", "memory", \

"r8", "r9", "r10","r11", "r12"); \
__sc_ret = __sc_3; \

30 __sc_err = __sc_0; \

Computer Science from the Bottom Up

113

} \
if (__sc_err & 0x10000000) \
{ \

errno = __sc_ret; \
35 __sc_ret = -1; \

} \
return (type) __sc_ret

#define __sc_loadargs_0(name, dummy...) \
40 __sc_0 = __NR_##name

#define __sc_loadargs_1(name, arg1) \
__sc_loadargs_0(name); \
__sc_3 = (unsigned long) (arg1)

#define __sc_loadargs_2(name, arg1, arg2) \
45 __sc_loadargs_1(name, arg1); \

__sc_4 = (unsigned long) (arg2)
#define __sc_loadargs_3(name, arg1, arg2, arg3) \

__sc_loadargs_2(name, arg1, arg2); \
__sc_5 = (unsigned long) (arg3)

50 #define __sc_loadargs_4(name, arg1, arg2, arg3, arg4) \
__sc_loadargs_3(name, arg1, arg2, arg3); \
__sc_6 = (unsigned long) (arg4)

#define __sc_loadargs_5(name, arg1, arg2, arg3, arg4, arg5) \
__sc_loadargs_4(name, arg1, arg2, arg3, arg4); \

55 __sc_7 = (unsigned long) (arg5)

#define __sc_asm_input_0 "0" (__sc_0)
#define __sc_asm_input_1 __sc_asm_input_0, "1" (__sc_3)
#define __sc_asm_input_2 __sc_asm_input_1, "2" (__sc_4)

60 #define __sc_asm_input_3 __sc_asm_input_2, "3" (__sc_5)

Computer Science from the Bottom Up

114

#define __sc_asm_input_4 __sc_asm_input_3, "4" (__sc_6)
#define __sc_asm_input_5 __sc_asm_input_4, "5" (__sc_7)

#define _syscall0(type,name) \
65 type name(void) \

{ \
__syscall_nr(0, type, name); \

}

70 #define _syscall1(type,name,type1,arg1) \
type name(type1 arg1) \
{ \

__syscall_nr(1, type, name, arg1); \
}

75
#define _syscall2(type,name,type1,arg1,type2,arg2) \
type name(type1 arg1, type2 arg2) \
{ \

__syscall_nr(2, type, name, arg1, arg2); \
80 }

#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
type name(type1 arg1, type2 arg2, type3 arg3) \
{ \

85 __syscall_nr(3, type, name, arg1, arg2, arg3); \
}

#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \

90 { \

Computer Science from the Bottom Up

115

__syscall_nr(4, type, name, arg1, arg2, arg3, arg4); \
}

#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5) \
95 type name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5) \

{ \
__syscall_nr(5, type, name, arg1, arg2, arg3, arg4, arg5); \

}

Example 3.2.1.1 PowerPC system call example

This code snippet from the kernel header file asm/unistd.h shows
how we can implement system calls on PowerPC. It looks very
complicated, but it can be broken down step by step.

Firstly, jump to the end of the example where the _syscallN macros
are defined. You can see there are many macros, each one taking
progressively one more argument. We'll concentrate on the most
simple version, _syscall0 to start with. It only takes two arguments,
the return type of the system call (e.g. a C int or char , etc) and the
name of the system call. For getpid this would be done as
_syscall0(int,getpid) .

Easy so far! We now have to start pulling apart __syscall_nr macro.
This is not dissimilar to where we were before, we take the number of
arguments as the first parameter, the type, name and then the actual
arguments.

The first step is declaring some names for registers. What this
essentially does is says __sc_0 refers to r0 (i.e. register 0). The
compiler will usually use registers how it wants, so it is important we
give it constraints so that it doesn't decide to go using register we
need in some ad-hoc manner.

We then call sc_loadargs with the interesting ## parameter. That is
just a paste command, which gets replaced by the nr variable. Thus
for our example it expands to __sc_loadargs_0(name, args); .
__sc_loadargs we can see below sets __sc_0 to be the system call

number; notice the paste operator again with the __NR_ prefix we
talked about, and the variable name that refers to a specific register.

So, all this tricky looking code actually does is puts the system call
number in register 0! Following the code through, we can see that the

Computer Science from the Bottom Up

116

other macros will place the system call arguments into r3 through
r7 (you can only have a maximum of 5 arguments to your system

call).

Now we are ready to tackle the __asm__ section. What we have here
is called inline assembly because it is assembler code mixed right in
with source code. The exact syntax is a little to complicated to go into
right here, but we can point out the important parts.

Just ignore the __volatile__ bit for now; it is telling the compiler that
this code is unpredictable so it shouldn't try and be clever with it.
Again we'll start at the end and work backwards. All the stuff after
the colons is a way of communicating to the compiler about what the
inline assembly is doing to the CPU registers. The compiler needs to
know so that it doesn't try using any of these registers in ways that
might cause a crash.

But the interesting part is the two assembly statements in the first
argument. The one that does all the work is the sc call. That's all you
need to do to make your system call!

So what happens when this call is made? Well, the processor is
interrupted knows to transfer control to a specific piece of code setup
at system boot time to handle interrupts. There are many interrupts;
system calls are just one. This code will then look in register 0 to find
the system call number; it then looks up a table and finds the right
function to jump to to handle that system call. This function receives
its arguments in registers 3 - 7.

So, what happens once the system call handler runs and completes?
Control returns to the next instruction after the sc , in this case a
memory fence instruction. What this essentially says is "make sure
everything is committed to memory"; remember how we talked about
pipelines in the superscalar architecture? This instruction ensures
that everything we think has been written to memory actually has
been, and isn't making its way through a pipeline somewhere.

Well, we're almost done! The only thing left is to return the value
from the system call. We see that __sc_ret is set from r3 and
__sc_err is set from r0. This is interesting; what are these two values

all about?

One is the return value, and one is the error value. Why do we need
two variables? System calls can fail, just as any other function. The
problem is that a system call can return any possible value; we can
not say "a negative value indicates failure" since a negative value
might be perfectly acceptable for some particular system call.

So our system call function, before returning, ensures its result is in
register r3 and any error code is in register r0. We check the error

Computer Science from the Bottom Up

117

code to see if the top bit is set; this would indicate a negative number.
If so, we set the global errno value to it (this is the standard variable
for getting error information on call failure) and set the return to be
-1 . Of course, if a valid result is received we return it directly.

So our calling function should check the return value is not -1 ; if it is
it can check errno to find the exact reason why the call failed.

And that is an entire system call on a PowerPC!

3.2.2 x86 system calls
Below we have the same interface as implemented for the x86
processor.

Computer Science from the Bottom Up

118

1 /* user-visible error numbers are in the range -1 - -124: see <asm-i386/errno.h> */

#define __syscall_return(type, res) \
do { \

5 if ((unsigned long)(res) >= (unsigned long)(-125)) { \
errno = -(res); \
res = -1; \

} \
return (type) (res); \

10 } while (0)

/* XXX - _foo needs to be __foo, while __NR_bar could be _NR_bar. */
#define _syscall0(type,name) \
type name(void) \

15 { \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name)); \

20 __syscall_return(type,__res);
}

#define _syscall1(type,name,type1,arg1) \
type name(type1 arg1) \

25 { \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1))); \

30 __syscall_return(type,__res);

Computer Science from the Bottom Up

119

}

#define _syscall2(type,name,type1,arg1,type2,arg2) \
type name(type1 arg1,type2 arg2) \

35 { \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2))); \

40 __syscall_return(type,__res);
}

#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
type name(type1 arg1,type2 arg2,type3 arg3) \

45 { \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

50 "d" ((long)(arg3))); \
__syscall_return(type,__res); \
}

#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
55 type name (type1 arg1, type2 arg2, type3 arg3, type4 arg4) \

{ \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
60 : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

Computer Science from the Bottom Up

120

"d" ((long)(arg3)),"S" ((long)(arg4))); \
__syscall_return(type,__res); \
}

65 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
{ \
long __res; \

70 __asm__ volatile ("int $0x80" \
: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

"d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5))); \
__syscall_return(type,__res); \

75 }

#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6 arg6) \
80 { \

long __res; \
__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int $0x80 ; pop %%ebp" \

: "=a" (__res) \
: "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

85 "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \
"0" ((long)(arg6))); \

__syscall_return(type,__res); \
}

Example 3.2.2.1 x86 system call example

The x86 architecture is very different from the PowerPC that we

Computer Science from the Bottom Up

121

looked at previously. The x86 is classed as a CISC processor as
opposed to the RISC PowerPC, and has dramatically less registers.

Start by looking at the most simple _syscall0 macro. It simply calls
the int instruction with a value of 0x80 . This instruction makes the
CPU raise interrupt 0x80, which will jump to code that handles
system calls in the kernel.

We can start inspecting how to pass arguments with the longer
macros. Notice how the PowerPC implementation cascaded macros
downwards, adding one argument per time. This implementation has
slightly more copied code, but is a little easier to follow.

x86 register names are based around letters, rather than the
numerical based register names of PowerPC. We can see from the
zero argument macro that only the A register gets loaded; from this
we can tell that the system call number is expected in the EAX
register. As we start loading registers in the other macros you can see
the short names of the registers in the arguments to the __asm__ call.

We see something a little more interesting in __syscall6 , the macro
taking 6 arguments. Notice the push and pop instructions? These
work with the stack on x86, "pushing" a value onto the top of the
stack in memory, and popping the value from the stack back into
memory. Thus in the case of having six registers we need to store the
value of the ebp register in memory, put our argument in in (the mov
instruction), make our system call and then restore the original value
into ebp . Here you can see the disadvantage of not having enough
registers; stores to memory are expensive so the more you can avoid
them, the better.

Another thing you might notice there is nothing like the memory
fence instruction we saw previously with the PowerPC. This is
because on x86 the effect of all instructions will be guaranteed to be
visible when the complete. This is easier for the compiler (and
programmer) to program for, but offers less flexibility.

The only thing left to contrast is the return value. On the PowerPC we
had two registers with return values from the kernel, one with the
value and one with an error code. However on x86 we only have one
return value that is passed into __syscall_return . That macro casts
the return value to unsigned long and compares it to an (architecture
and kernel dependent) range of negative values that might represent
error codes (note that the errno value is positive, so the negative
result from the kernel is negated). However, this means that system
calls can not return small negative values, since they are
indistinguishable from error codes. Some system calls that have this
requirement, such as getpriority() , add an offset to their return
value to force it to always be positive; it is up to the userspace to
realise this and subtract this constant value to get back to the "real"

Computer Science from the Bottom Up

122

value.

4 Privileges
4.1 Hardware
We mentioned how one of the major tasks of the operating system is
to implement security; that is to not allow one application or user to
interfere with any other that is running in the system. This means
applications should not be able to overwrite each others memory or
files, and only access system resources as dictated by system policy.

However, when an application is running it has exclusive use of the
processor. We see how this works when we examine processes in the
next chapter. Ensuring the application only accesses memory it owns
is implemented by the virtual memory system, which we examine in
the chapter after next. The essential point is that the hardware is
responsible for enforcing these rules.

The system call interface we have examined is the gateway to the
application getting to system resources. By forcing the application to
request resources through a system call into the kernel, the kernel
can enforce rules about what sort of access can be provided. For
example, when an application makes an open() system call to open a
file on disk, it will check the permissions of the user against the file
permissions and allow or deny access.

4.1.1 Privilege Levels
Hardware protection can usually be seen as a set of concentric rings
around a core set of operations.

Computer Science from the Bottom Up

123

Ring 0

Ring 1

Ring 2

Ring n

Privilege levels on x86

Figure 4.1.1.1 Rings

In the inner most ring are the most protected instructions; those that
only the kernel should be allowed to call. For example, the HLT
instruction to halt the processor should not be allowed to be run by a
user application, since it would stop the entire computer from
working. However, the kernel needs to be able to call this instruction
when the computer is legitimately shut down.1

Each inner ring can access any instructions protected by a further out
ring, but not any protected by a further in ring. Not all architectures
have multiple levels of rings as above, but most will either provide for
at least a "kernel" and "user" level.

4.1.1.1 386 protection model

The 386 protection model has four rings, though most operating
systems (such as Linux and Windows) only use two of the rings to
maintain compatibility with other architectures that do now allow as

1. What happens when a "naughty" application calls that instruction
anyway? The hardware will usually raise an exception, which will
involve jumping to a specified handler in the operating system similar to
the system call handler. The operating system will then probably
terminate the program, usually giving the user some error about how
the application has crashed.

Computer Science from the Bottom Up

124

many discrete protection levels.

386 maintains privileges by making each piece of application code
running in the system have a small descriptor, called a code
descriptor, which describes, amongst other things, its privilege level.
When running application code makes a jump into some other code
outside the region described by its code descriptor, the privilege level
of the target is checked. If it is higher than the currently running
code, the jump is disallowed by the hardware (and the application will
crash).

4.1.1.2 Raising Privilege

Applications may only raise their privilege level by specific calls that
allow it, such as the instruction to implement a system call. These are
usually referred to as a call gate because they function just as a
physical gate; a small entry through an otherwise impenetrable wall.
When that instruction is called we have seen how the hardware
completely stops the running application and hands control over to
the kernel. The kernel must act as a gatekeeper; ensuring that
nothing nasty is coming through the gate. This means it must check
system call arguments carefully to make sure it will not be fooled into
doing anything it shouldn't (if it can be, that is a security bug). As the
kernel runs in the innermost ring, it has permissions to do any
operation it wants; when it is finished it will return control back to
the application which will again be running with its lower privilege
level.

4.1.1.3 Fast System Calls

One problem with traps as described above is that they are very
expensive for the processor to implement. There is a lot of state to be
saved before context can switch. Modern processors have realised
this overhead and strive to reduce it.

To understand the call-gate mechanism described above requires
investigation of the ingenious but complicated segmentation scheme
used by the processor. The original reason for segmentation was to be
able to use more than the 16 bits available in a register for an
address, as illustrated in Figure 4.1.1.3.1, x86 Segmentation
Addressing.

Computer Science from the Bottom Up

125

CODE

DATA

STACK

CS:0x1000

DS:0x4000

64K (2^16)

SS:0x10000

2^0

2^20

CPU

64KiB Segments

ADDRESS

16 bits
4 bits

20 bits (1MiB)

SEGMENT

Segmentation expanding the address space of a processor by dividing it
into chunks. The processor keeps special segment registers, and addresses
are specified by a segment register and offset combination. The value of
the segment register is added to the offset portion to find a final address.

Figure 4.1.1.3.1 x86 Segmentation Addressing

When x86 moved to 32 bit registers, the segmentation scheme
remained but in a different format. Rather than fixed segment sizes,
segments are allowed to be any size. This means the processor needs
to keep track of all these different segments and their sizes, which it
does using descriptors. The segment descriptors available to
everyone are kept in the global descriptor table or GDT for short.
Each process has a number of registers which point to entries in the
GDT; these are the segments the process can access (there are also
local descriptor tables, and it all interacts with task state segments,
but that's not important now). The overall situation is illustrated in
Figure 4.1.1.3.2, x86 segments.

Computer Science from the Bottom Up

126

G
at

e
C

al
l

D
at

a
Pr

oc
es

s

C
od

e
Pr

oc
es

s
TS

S
Pr

oc
es

s

CODE

DATA

STACK

Start : 0x1000

Size : 0x1000

Ring : 0

Type : CODE

Target Segment

Target Offset

Protection

Type : GATE

Start : 0x2000

Size : 0x1000

Ring : 3

Type : CODE

Start : 0x3000

Size : 0x1000

Ring : 3

Type : DATA

St
ac

k
Pr

oc
es

s

Start : 0x4000

Size : 0x1000

Ring : 3

Type : STACK

Start : 0x5000

Size : 0x1000

Ring : 3

Type : TSS

Call gate invokes

code at given offset

Backing store for process
state on context switch

"Far" call invokes a call gate

which redirects to another segment

1

2
3

0

Protection rings ensure outer
rings can not see inner rings

Global Descriptor Table

Process

Registers, etc

Pr
ot

ec
te

d
C

od
e

x86 segments in action. Notice how a "far-call" passes via a call-gate which
redirects to a segment of code running at a lower ring level. The only way

Computer Science from the Bottom Up

127

to modify the code-segment selector, implicitly used for all code addresses,
is via the call mechanism. Thus the call-gate mechanism ensures that to
choose a new segment descriptor, and hence possibly change protection
levels, you must transition via a known entry point.

Figure 4.1.1.3.2 x86 segments

Since the operating system assigns the segment registers as part of
the process state, the processor hardware knows what segments of
memory the currently running process can access and can enforce
protection to ensure the process doesn't touch anything it is not
supposed to. If it does go out of bounds, you receive a segmentation
fault, which most programmers are familiar with.

The picture becomes more interesting when running code needs to
make calls into code that resides in another segment. As discussed in
Section 4.1.1.1, 386 protection model, x86 does this with rings, where
ring 0 is the highest permission, ring 3 is the lowest, and inner rings
can access outer rings but not vice-versa.

As discussed in Section 4.1.1.2, Raising Privilege, when ring 3 code
wants to jump into ring 0 code, it is essentially modifying its code
segment selector to point to a different segment. To do this, it must
use a special far-call instruction which hardware ensures passes
through the call gate. There is no other way for the running process
to choose a new code-segment descriptor, and hence the processor
will start executing code at the known offset within the ring 0
segment, which is responsible for maintaining integrity (e.g. not
reading arbitrary and possibly malicious code and executing it. Of
course nefarious attackers will always look for ways to make your
code do what you did not intend it to!).

This allows a whole hierarchy of segments and permissions between
them. You might have noticed a cross segment call sounds exactly like
a system call. If you've ever looked at Linux x86 assembly the
standard way to make a system call is int 0x80 , which raises
interrupt 0x80 . An interrupt stops the processor and goes to an
interrupt gate, which then works the same as a call gate -- it changes
privilege level and bounces you off to some other area of code .

The problem with this scheme is that it is slow. It takes a lot of effort
to do all this checking, and many registers need to be saved to get
into the new code. And on the way back out, it all needs to be
restored again.

On a modern x86 system segmentation and the four-level ring system
is not used thanks to virtual memory, discussed fully in Chapter 6,
Virtual Memory. The only thing that really happens with

Computer Science from the Bottom Up

128

segmentation switching is system calls, which essentially switch from
mode 3 (userspace) to mode 0 and jump to the system call handler
code inside the kernel. Thus the processor provides extra fast system
call instructions called sysenter (and sysexit to get back) which
speed up the whole process over a int 0x80 call by removing the
general nature of a far-call — that is the possibility of transitioning
into any segment at any ring level — and restricting the call to only
transition to ring 0 code at a specific segment and offset, as stored in
registers.

Because the general nature has been replaced with so much prior-
known information, the whole process can be speed up, and hence we
have a the aforementioned fast system call. The other thing to note is
that state is not preserved when the kernel gets control. The kernel
has to be careful to not to destroy state, but it also means it is free to
only save as little state as is required to do the job, so can be much
more efficient about it. This is a very RISC philosophy, and illustrates
how the line blurs between RISC and CISC processors.

For more information on how this is implemented in the Linux kernel,
see Section 8.1.1, Kernel Library.

4.2 Other ways of communicating with
the kernel
4.2.1 ioctl
about ioctls

4.3 File Systems
about proc, sysfs, debugfs, etc

Chapter 5. The Process
1 What is a process?
We are all familiar with the modern operating system running many
tasks all at once or multitasking.

We can think of each process as a bundle of elements kept by the
kernel to keep track of all these running tasks.

Computer Science from the Bottom Up

129

2 Elements of a process

Files

Registers

Memory

Kernel State

Process ID

Figure 2.1 The Elements of a Process

2.1 Process ID
The process ID (or the PID) is assigned by the operating system and is
unique to each running process.

2.2 Memory
We will learn exactly how a process gets its memory in the following
weeks -- it is one of the most fundamental parts of how the operating
system works. However, for now it is sufficient to know that each
process gets its own section of memory.

In this memory all the program code is stored, along with variables

Computer Science from the Bottom Up

130

and any other allocated storage.

Parts of the memory can be shared between processes (called, not
surprisingly shared memory). You will often see this called System
Five Shared Memory (or SysV SHM) after the original implementation
in an older operating system.

Another important concept a process may utilise is that of mmaping a
file on disk to memory. This means that instead of having to open the
file and use commands such as read() and write() the file looks as if
it were any other type of RAM. mmaped areas have permissions such
as read, write and execute which need to be kept track of. As we
know, it is the job of the operating system to maintain security and
stability, so it needs to check if a process tries to write to a read only
area and return an error.

2.2.1 Code and Data
A process can be further divided into code and data sections.
Program code and data should be kept separately since they require
different permissions from the operating system and separation
facilitates sharing of code (as you see later). The operating system
needs to give program code permission to be read and executed, but
generally not written to. On the other hand data (variables) require
read and write permissions but should not be executable1.

2.2.2 The Stack
One other very important part of a process is an area of memory
called the stack. This can be considered part of the data section of a
process, and is intimately involved in the execution of any program.

A stack is generic data structure that works exactly like a stack of
plates; you can push an item (put a plate on top of a stack of plates),
which then becomes the top item, or you can pop an item (take a
plate off, exposing the previous plate).

Stacks are fundamental to function calls. Each time a function is
called it gets a new stack frame . This is an area of memory which
usually contains, at a minimum, the address to return to when
complete, the input arguments to the function and space for local
variables.

By convention, stacks usually grow down2 . This means that the stack

1. Not all architectures support this, however. This has lead to a wide
range of security problems on many architectures.

2. Some architectures, such as PA-RISC from HP, have stacks that grow

Computer Science from the Bottom Up

131

starts at a high address in memory and progressively gets lower.

High

Address

function1(int x, int y)

{

int z

}
z = function2(x+y)

input (a)

return addr

input (y)

input (x)

return addr

local (z)

{
return a + 100

}

int function2(int a)

St
ac

k
Fr

am
e

Figure 2.2.2.1 The Stack

We can see how having a stack brings about many of the features of
functions.

• Each function has its own copy of its input arguments. This is
because each function is allocated a new stack frame with its
arguments in a fresh area of memory.

• This is the reason why a variable defined inside a function can
not be seen by other functions. Global variables (which can be
seen by any function) are kept in a separate area of data
memory.

• This facilitates recursive calls. This means a function is free to
call itself again, because a new stack frame will be created for
all its local variables.

• Each frame contains the address to return to. C only allows a
single value to be returned from a function, so by convention
this value is returned to the calling function in a specified
register, rather than on the stack.

• Because each frame has a reference to the one before it, a

upwards. On some other architectures, such as IA64, there are other
storage areas (the register backing store) that grow from the bottom
toward the stack.

Computer Science from the Bottom Up

132

debugger can "walk" backwards, following the pointers up the
stack. From this it can produce a stack trace which shows you
all functions that were called leading into this function. This is
extremely useful for debugging.

You can see how the way functions works fits exactly into the
nature of a stack. Any function can call any other function,
which then becomes the up most function (put on top of the
stack). Eventually that function will return to the function that
called it (takes itself off the stack).

• Stacks do make calling functions slower, because values must
be moved out of registers and into memory. Some architectures
allow arguments to be passed in registers directly; however to
keep the semantics that each function gets a unique copy of
each argument the registers must rotate.

• You may have heard of the term a stack overflow. This is a
common way of hacking a system by passing bogus values. If
you as a programmer accept arbitrary input into a stack
variable (say, reading from the keyboard or over the network)
you need to explicitly say how big that data is going to be.

Allowing any amount of data unchecked will simply overwrite
memory. Generally this leads to a crash, but some people
realised that if they overwrote just enough memory to place a
specific value in the return address part of the stack frame,
when the function completed rather than returning to the
correct place (where it was called from) they could make it
return into the data they just sent. If that data contains binary
executable code that hacks the system (e.g. starts a terminal
for the user with root privileges) then your computer has been
compromised.

This happens because the stack grows downwards, but data is
read in "upwards" (i.e. from lower address to higher
addresses).

There are several ways around this; firstly as a programmer
you must ensure that you always check the amount of data you
are receiving into a variable. The operating system can help to
avoid this on behalf of the programmer by ensuring that the
stack is marked as not executable; that is that the processor
will not run any code, even if a malicious user tries to pass
some into your program. Modern architectures and operating
systems support this functionality.

• Stacks are ultimately managed by the compiler, as it is
responsible for generating the program code. To the operating
system the stack just looks like any other area of memory for

Computer Science from the Bottom Up

133

the process.

To keep track of the current growth of the stack, the hardware
defines a register as the stack pointer. The compiler (or the
programmer, when writing in assembler) uses this register to keep
track of the current top of the stack.

Computer Science from the Bottom Up

134

1 $ cat sp.c
void function(void)
{

int i = 100;
5 int j = 200;

int k = 300;
}

$ gcc -fomit-frame-pointer -S sp.c
10

$ cat sp.s
.file "sp.c"
.text

.globl function
15 .type function, @function

function:
subl $16, %esp
movl $100, 4(%esp)
movl $200, 8(%esp)

20 movl $300, 12(%esp)
addl $16, %esp
ret
.size function, .-function
.ident "GCC: (GNU) 4.0.2 20050806 (prerelease) (Debian 4.0.1-4)"

25 .section .note.GNU-stack,"",@progbits

Example 2.2.2.1 Stack pointer example

Above we show a simple function allocating three variables on the
stack. The disassembly illustrates the use of the stack pointer on the
x86 architecture1. Firstly we allocate some space on the stack for our

1. Note we used the special flag to gcc -fomit-frame-pointer which
specifies that an extra register should not be used to keep a pointer to

Computer Science from the Bottom Up

135

local variables. Since the stack grows down, we subtract from the
value held in the stack pointer. The value 16 is a value large enough
to hold our local variables, but may not be exactly the size required
(for example with 3 4 byte int values we really only need 12 bytes,
not 16) to keep alignment of the stack in memory on certain
boundaries as the compiler requires.

Then we move the values into the stack memory (and in a real
function, use them). Finally, before returning to our parent function
we "pop" the values off the stack by moving the stack pointer back to
where it was before we started.

2.2.3 The Heap
The heap is an area of memory that is managed by the process for on
the fly memory allocation. This is for variables whose memory
requirements are not known at compile time.

The bottom of the heap is known as the brk, so called for the system
call which modifies it. By using the brk call to grow the area
downwards the process can request the kernel allocate more memory
for it to use.

The heap is most commonly managed by the malloc library call. This
makes managing the heap easy for the programmer by allowing them
to simply allocate and free (via the free call) heap memory. malloc
can use schemes like a buddy allocator to manage the heap memory
for the user. malloc can also be smarter about allocation and
potentially use anonymous mmaps for extra process memory. This is
where instead of mmaping a file into the process memory it directly
maps an area of system RAM. This can be more efficient. Due to the
complexity of managing memory correctly, it is very uncommon for
any modern program to have a reason to call brk directly.

the start of the stack frame. Having this pointer helps debuggers to
walk upwards through the stack frames, however it makes one less
register available for other applications.

Computer Science from the Bottom Up

136

2.2.4 Memory Layout

Kernel

Shared Libraries
mmap area

Stack

Heap
malloc()

BSS

Data

Code

Pr
og

ra
m

 Im
ag

e

Process Memory

brk

Figure 2.2.4.1 Process memory layout

As we have seen a process has smaller areas of memory allocated to
it, each with a specific purpose.

An example of how the process is laid out in memory by the kernel is
given above. Starting from the top, the kernel reserves itself some
memory at the top of the process (we see with virtual memory how
this memory is actually shared between all processes).

Underneath that is room for mmaped files and libraries. Underneath

Computer Science from the Bottom Up

137

that is the stack, and below that the heap.

At the bottom is the program image, as loaded from the executable
file on disk. We take a closer look at the process of loading this data
in later chapters.

2.3 File Descriptors
In the first week we learnt about stdin , stdout and stderr ; the
default files given to each process. You will remember that these files
always have the same file descriptor number (0,1,2 respectively).

Thus, file descriptors are kept by the kernel individually for each
process.

File descriptors also have permissions. For example, you may be able
to read from a file but not write to it. When the file is opened, the
operating system keeps a record of the processes permissions to that
file in the file descriptor and doesn't allow the process to do anything
it shouldn't.

2.4 Registers
We know from the previous chapter that the processor essentially
performs generally simple operations on values in registers. These
values are read (and written) to memory -- we mentioned above that
each process is allocated memory which the kernel keeps track of.

So the other side of the equation is keeping track of the registers.
When it comes time for the currently running process to give up the
processor so another process can run, it needs to save its current
state. Equally, we need to be able to restore this state when the
process is given more time to run on the CPU. To do this the
operating system needs to store a copy of the CPU registers to
memory. When it is time for the process to run again, the operating
system will copy the register values back from memory to the CPU
registers and the process will be right back where it left off.

2.5 Kernel State
Internally, the kernel needs to keep track of a number of elements for
each process.

Computer Science from the Bottom Up

138

2.5.1 Process State
Another important element for the operating system to keep track of
is the process state. If the process is currently running it makes sense
to have it in a running state.

However, if the process has requested to read a file from disk we
know from our memory hierarchy that this may take a significant
amount of time. The process should give up its current execution to
allow another process to run, but the kernel need not let the process
run again until the data from the disk is available in memory. Thus it
can mark the process as disk wait (or similar) until the data is ready.

2.5.2 Priority
Some processes are more important than others, and get a higher
priority. See the discussion on the scheduler below.

2.5.3 Statistics
The kernel can keep statistics on each processes behaviour which can
help it make decisions about how the process behaves; for example
does it mostly read from disk or does it mostly do CPU intensive
operations?

3 Process Hierarchy
Whilst the operating system can run many processes at the same
time, in fact it only ever directly starts one process called the init
(short for initial) process. This isn't a particularly special process
except that its PID is always 0 and it will always be running.

All other processes can be considered children of this initial process.
Processes have a family tree just like any other; each process has a
parent and can have many siblings, which are processes created1 by
the same parent.

Certainly children can create more children and so on and so forth.

1. The term spawn is often used when talking about parent processes
creating children; as in "the process spawned a child".

Computer Science from the Bottom Up

139

1 init-+-apmd
|-atd
|-cron
...

5 |-dhclient
|-firefox-bin-+-firefox-bin---2*[firefox-bin]
| |-java_vm---java_vm---13*[java_vm]
| `-swf_play

Example 3.1 pstree example

4 Fork and Exec
New processes are created by the two related interfaces fork and
exec .

4.1 Fork
When you come to metaphorical "fork in the road" you generally have
two options to take, and your decision effects your future. Computer
programs reach this fork in the road when they hit the fork() system
call.

At this point, the operating system will create a new process that is
exactly the same as the parent process. This means all the state that
was talked about previously is copied, including open files, register
state and all memory allocations, which includes the program code.

The return value from the system call is the only way the process can
determine if it was the existing process or a new one. The return
value to the parent process will be the Process ID (PID) of the child,
whilst the child will get a return value of 0.

At this point, we say the process has forked and we have the parent-
child relationship as described above.

Computer Science from the Bottom Up

140

4.2 Exec
Forking provides a way for an existing process to start a new one, but
what about the case where the new process is not part of the same
program as parent process? This is the case in the shell; when a user
starts a command it needs to run in a new process, but it is unrelated
to the shell.

This is where the exec system call comes into play. exec will replace
the contents of the currently running process with the information
from a program binary.

Thus the process the shell follows when launching a new program is
to firstly fork , creating a new process, and then exec (i.e. load into
memory and execute) the program binary it is supposed to run.

4.3 How Linux actually handles fork and
exec
4.3.1 clone

In the kernel, fork is actually implemented by a clone system call.
This clone interfaces effectively provides a level of abstraction in
how the Linux kernel can create processes.

clone allows you to explicitly specify which parts of the new process
are copied into the new process, and which parts are shared between
the two processes. This may seem a bit strange at first, but allows us
to easily implement threads with one very simple interface.

4.3.1.1 Threads

While fork copies all of the attributes we mentioned above, imagine
if everything was copied for the new process except for the memory.
This means the parent and child share the same memory, which
includes program code and data.

Computer Science from the Bottom Up

141

Kernel State

Registers

Thread ID

Kernel State

Registers

Thread ID

Process ID

Memory

Files

Figure 4.3.1.1.1 Threads

This hybrid child is called a thread. Threads have a number of
advantages over where you might use fork

1. Separate processes can not see each others memory. They can
only communicate with each other via other system calls.

Threads however, share the same memory. So you have the
advantage of multiple processes, with the expense of having to
use system calls to communicate between them.

The problem that this raises is that threads can very easily step
on each others toes. One thread might increment a variable,
and another may decrease it without informing the first thread.
These type of problems are called concurrency problems and
they are many and varied.

Computer Science from the Bottom Up

142

To help with this, there are userspace libraries that help
programmers work with threads properly. The most common
one is called POSIX threads or, as it more commonly referred to
pthreads

2. Switching processes is quite expensive, and one of the major
expenses is keeping track of what memory each process is
using. By sharing the memory this overhead is avoided and
performance can be significantly increased.

There are many different ways to implement threads. On the one
hand, a userspace implementation could implement threads within a
process without the kernel having any idea about it. The threads all
look like they are running in a single process to the kernel.

This is suboptimal mainly because the kernel is being withheld
information about what is running in the system. It is the kernels job
to make sure that the system resources are utilised in the best way
possible, and if what the kernel thinks is a single process is actually
running multiple threads it may make suboptimal decisions.

Thus the other method is that the kernel has full knowledge of the
thread. Under Linux, this is established by making all processes able
to share resources via the clone system call. Each thread still has
associated kernel resources, so the kernel can take it into account
when doing resource allocations.

Other operating systems have a hybrid method, where some threads
can be specified to run in userspace only ("hidden" from the kernel)
and others might be a light weight process, a similar indication to the
kernel that the processes is part of a thread group.

4.3.1.2 Copy on write

As we mentioned, copying the entire memory of one process to
another when fork is called is an expensive operation.

One optimisation is called copy on write. This means that similar to
threads above, the memory is actually shared, rather than copied,
between the two processes when fork is called. If the processes are
only going to be reading the memory, then actually copying the data
is unnecessary.

However, when a process writes to its memory, it needs to be a
private copy that is not shared. As the name suggests, copy on write
optimises this by only doing the actual copy of the memory at the
point when it is written to.

Copy on write also has a big advantage for exec . Since exec will
simply be overwriting all the memory with the new program, actually

Computer Science from the Bottom Up

143

copying the memory would waste a lot of time. Copy on write saves us
actually doing the copy.

4.4 The init process
We discussed the overall goal of the init process previously, and we
are now in a position to understand how it works.

On boot the kernel starts the init process, which then forks and execs
the systems boot scripts. These fork and exec more programs,
eventually ending up forking a login process.

The other job of the init process is "reaping". When a process calls
exit with a return code, the parent usually wants to check this code

to see if the child exited correctly or not.

However, this exit code is part of the process which has just called
exit . So the process is "dead" (e.g. not running) but still needs to

stay around until the return code is collected. A process in this state
is called a zombie (the traits of which you can contrast with a
mystical zombie!)

A process stays as a zombie until the parent collects the return code
with the wait call. However, if the parent exits before collecting this
return code, the zombie process is still around, waiting aimlessly to
give its status to someone.

In this case, the zombie child will be reparented to the init process
which has a special handler that reaps the return value. Thus the
process is finally free and the descriptor can be removed from the
kernels process table.

Computer Science from the Bottom Up

144

4.4.1 Zombie example

1 $ cat zombie.c
#include <stdio.h>
#include <stdlib.h>

5 int main(void)
{

pid_t pid;

printf("parent : %d\n", getpid());
10

pid = fork();

if (pid == 0) {
printf("child : %d\n", getpid());

15 sleep(2);
printf("child exit\n");
exit(1);

}

20 /* in parent */
while (1)
{

sleep(1);
}

25 }

$ ps ax | grep [z]ombie
16168 pts/9 S 0:00 ./zombie
16169 pts/9 Z 0:00 [zombie] <defunct>

Example 4.4.1.1 Zombie example process

Computer Science from the Bottom Up

145

Above we create a zombie process. The parent process will sleep
forever, whilst the child will exit after a few seconds.

Below the code you can see the results of running the program. The
parent process (16168) is in state S for sleep (as we expect) and the
child is in state Z for zombie. The ps output also tells us that the
process is defunct in the process description.1

5 Context Switching
Context switching refers to the process the kernel undertakes to
switch from one process to another. XXX ?

6 Scheduling
A running system has many processes, maybe even into the hundreds
or thousands. The part of the kernel that keeps track of all these
processes is called the scheduler because it schedules which process
should be run next.

Scheduling algorithms are many and varied. Most users have
different goals relating to what they want their computer to do, so
this affects scheduling decisions. For example, for a desktop PC you
want to make sure that your graphical applications for your desktop
are given plenty of time to run, even if system processes take a little
longer. This will increase the responsiveness the user feels, as their
actions will have more immediate responses. For a server, you might
want your web server application to be given priority.

People are always coming up with new algorithms, and you can
probably think of your own fairly easily. But there are a number of
different components of scheduling.

6.1 Preemptive v co-operative scheduling
Scheduling strategies can broadly fall into two categories

1. Co-operative scheduling is where the currently running process

1. The square brackets around the "z" of "zombie" are a little trick to
remove the grep processes itself from the ps output. grep interprets
everything between the square brackets as a character class, but
because the process name will be "grep [z]ombie" (with the brackets)
this will not match!

Computer Science from the Bottom Up

146

voluntarily gives up executing to allow another process to run.
The obvious disadvantage of this is that the process may decide
to never give up execution, probably because of a bug causing
some form of infinite loop, and consequently nothing else can
ever run.

2. Preemptive scheduling is where the process is interrupted to
stop it to allow another process to run. Each process gets a
time-slice to run in; at the point of each context switch a timer
will be reset and will deliver and interrupt when the time-slice
is over.

We know that the hardware handles the interrupt
independently of the running process, and so at this point
control will return to the operating system. At this point, the
scheduler can decide which process to run next.

This is the type of scheduling used by all modern operating
systems.

6.2 Realtime
Some processes need to know exactly how long their time-slice will
be, and how long it will be before they get another time-slice to run.
Say you have a system running a heart-lung machine; you don't want
the next pulse to be delayed because something else decided to run in
the system!

Hard realtime systems make guarantees about scheduling decisions
like the maximum amount of time a process will be interrupted before
it can run again. They are often used in life critical applications like
medical, aircraft and military applications.

Soft realtime is a variation on this, where guarantees aren't as strict
but general system behaviour is predictable. Linux can be used like
this, and it is often used in systems dealing with audio and video. If
you are recording an audio stream, you don't want to be interrupted
for long periods of time as you will loose audio data which can not be
retrieved.

6.3 Nice value
UNIX systems assign each process a nice value. The scheduler looks
at the nice value and can give priority to those processes that have a
higher "niceness".

Computer Science from the Bottom Up

147

6.4 A brief look at the Linux Scheduler
The Linux scheduler has and is constantly undergoing many changes
as new developers attempt to improve its behaviour.

The current scheduler is known as the O(1) scheduler, which refers to
the property that no matter how many processes the scheduler has to
choose from, it will choose the next one to run in a constant amount
of time1.

Previous incarnations of the Linux scheduler used the concept of
goodness to determine which process to run next. All possible tasks
are kept on a run queue, which is simply a linked list of processes
which the kernel knows are in a "runnable" state (i.e. not waiting on
disk activity or otherwise asleep). The problem arises that to
calculate the next process to run, every possible runnable process
must have its goodness calculated and the one with the highest
goodness ``wins''. You can see that for more tasks, it will take longer
and longer to decide which processes will run next.

Process

Bitmap

Lowest PriorityHighest Priority

Figure 6.4.1 The O(1) scheduler

In contrast, the O(1) scheduler uses a run queue structure as shown
above. The run queue has a number of buckets in priority order and a
bitmap that flags which buckets have processes available. Finding the
next process to run is a matter of reading the bitmap to find the first
bucket with processes, then picking the first process off that bucket's

1. Big-O notation is a way of describing how long an algorithm takes to run
given increasing inputs. If the algorithm takes twice as long to run for
twice as much input, this is increasing linearly. If another algorithm
takes four times as long to run given twice as much input, then it is
increasing exponentially. Finally if it takes the same amount of time now
matter how much input, then the algorithm runs in constant time.
Intuitively you can see that the slower the algorithm grows for more
input, the better it is. Computer science text books deal with algorithm
analysis in more detail.

Computer Science from the Bottom Up

148

queue. The scheduler keeps two such structures, an active and
expired array for processes that are runnable and those which have
utilised their entire time slice respectively. These can be swapped by
simply modifying pointers when all processes have had some CPU
time.

The really interesting part, however, is how it is decided where in the
run queue a process should go. Some of the things that need to be
taken into account are the nice level, processor affinity (keeping
processes tied to the processor they are running on, since moving a
process to another CPU in a SMP system can be an expensive
operation) and better support for identifying interactive programs
(applications such as a GUI which may spend much time sleeping,
waiting for user input, but when the user does get around to
interacting with it wants a fast response).

7 The Shell
On a UNIX system, the shell is the standard interface to handling
processes on your system. Once the shell was the primary interface,
however modern Linux systems have a GUI and provide a shell via a
"terminal application" or similar. The primary job of the shell is to
help the user handle starting, stopping and otherwise controlling
processes running in the system.

When you type a command at the prompt of the shell, it will fork a
copy of itself and exec the command that you have specified.

The shell then, by default, waits for that process to finish running
before returning to a prompt to start the whole process over again.

As an enhancement, the shell also allows you to background a job,
usually by placing an & after the command name. This is simply a
signal that the shell should fork and execute the command, but not
wait for the command to complete before showing you the prompt
again.

The new process runs in the background, and the shell is ready
waiting to start a new process should you desire. You can usually tell
the shell to foreground a process, which means we do actually want
to wait for it to finish.

XXX : a bit of history about bourne shell

Computer Science from the Bottom Up

149

8 Signals
Processes running in the system require a way to be told about events
that influence them. On UNIX there is infrastructure between the
kernel and processes called signals which allows a process to receive
notification about events important to it.

When a signal is sent to a process, the kernel invokes a handler which
the process must register with the kernel to deal with that signal. A
handler is simply a designed function in the code that has been
written to specifically deal with interrupt. Often the signal will be
sent from inside the kernel itself, however it is also common for one
process to send a signal to another process (one form of interprocess
communication). The signal handler gets called asynchronously; that
is the currently running program is interrupted from what it is doing
to process the signal event.

For example, one type of signal is an interrupt (defined in system
headers as SIGINT) is delivered to the process when the ctrl-c
combination is pressed.

As a process uses the read system call to read input from the
keyboard, the kernel will be watching the input stream looking for
special characters. Should it see a ctrl-c it will jump into signal
handling mode. The kernel will look to see if the process has
registered a handler for this interrupt. If it has, then execution will be
passed to that function where the function will handle it. Should the
process have not registered a handler for this particular signal, then
the kernel will take some default action. With ctrl-c the default
action is to terminate the process.

A process can choose to ignore some signals, but other signals are
not allowed to be ignored. For example, SIGKILL is the signal sent
when a process should be terminated. The kernel will see that the
process has been sent this signal and terminate the process from
running, no questions asked. The process can not ask the kernel to
ignore this signal, and the kernel is very careful about which process
is allowed to send this signal to another process; you may only send it
to processes owned by you unless you are the root user. You may have
seen the command kill -9 ; this comes from the implementation
SIGKILL signal. It is commonly known that SIGKILL is actually defined

to be 0x9 , and so when specified as an argument to the kill
program means that the process specified is going to be stopped
immediately. Since the process can not choose to ignore or handle
this signal, it is seen as an avenue of last resort, since the program
will have no chance to clean up or exit cleanly. It is considered better
to first send a SIGTERM (for terminate) to the process first, and if it
has crashed or otherwise will not exit then resort to the SIGKILL . As a

Computer Science from the Bottom Up

150

matter of convention, most programs will install a handler for SIGHUP
(hangup -- a left over from days of serial terminals and modems)
which will reload the program, perhaps to pick up changes in a
configuration file or similar.

If you have programmed on a Unix system you would be familiar with
segmentation faults when you try to read or write to memory that

has not been allocated to you. When the kernel notices that you are
touching memory outside your allocation, it will send you the
segmentation fault signal. Usually the process will not have a handler
installed for this, and so the default action to terminate the program
ensues (hence your program "crashes"). In some cases a program
may install a handler for segmentation faults, although reasons for
doing this are limited.

This raises the question of what happens after the signal is received.
Once the signal handler has finished running, control is returned to
the process which continues on from where it left off.

8.1 Example
The following simple program introduces a lot of signals to run!

Computer Science from the Bottom Up

151

1 $ cat signal.c
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

5
void sigint_handler(int signum)
{

printf("got SIGINT\n");
}

10
int main(void)
{

signal(SIGINT, sigint_handler);
printf("pid is %d\n", getpid());

15 while (1)
sleep(1);

}
$ gcc -Wall -o signal signal.c
$./signal

20 pid is 2859
got SIGINT # press ctrl-c

press ctrl-z
[1]+ Stopped ./signal

25 $ kill -SIGINT 2859
$ fg
./signal
got SIGINT
Quit # press ctrl-\

30

Computer Science from the Bottom Up

152

$

Example 8.1.1 Signals Example

We have simple program that simply defines a handler for the SIGINT
signal, which is sent when the user presses ctrl-c . All the signals for
the system are defined in signal.h , including the signal function
which allows us to register the handling function.

The program simply sits in a tight loop doing nothing until it quits.
When we start the program, we try pressing ctrl-c to make it quit.
Rather than taking the default action, or handler is invoked and we
get the output as expected.

We then press ctrl-z which sends a SIGSTOP which by default puts
the process to sleep. This means it is not put in the queue for the
scheduler to run and is thus dormant in the system.

As an illustration, we use the kill program to send the same signal
from another terminal window. This is actually implemented with the
kill system call, which takes a signal and PID to send to (this

function is a little misnamed because not all signals do actually kill
the process, as we are seeing, but the signal function was already
taken to register the handler). As the process is stopped, the signal
gets queued for the process. This means the kernel takes note of the
signal and will deliver it when appropriate.

At this point we wake the process up by using the command fg . This
actually sends a SIGCONT signal to the process, which by default will
wake the process back up. The kernel knows to put the process on the
run queue and give it CPU time again. We see at this point the
queued signal is delivered.

In desperation to get rid of the program, we finally try ctrl-\ which
sends a SIGQUIT (abort) to the process. But if the process has
aborted, where did the Quit output come from?

You guessed it, more signals! When a parent child has a process that
dies, it gets a SIGCHLD signal back. In this case the shell was the
parent process and so it got the signal. Remember how we have the
zombie process that needs to be reaped with the wait call to get the
return code from the child process? Well another thing it also gives
the parent is the signal number that the child may have died from.
Thus the shell knows that child process died from a SIGABRT and as
an informational service prints as much for the user (the same
process happens to print out "Segmentation Fault" when the child

Computer Science from the Bottom Up

153

process dies from a SIGSEGV).

You can see how in even a simple program, around 5 different signals
were used to communicate between processes and the kernel and
keep things running. There are many other signals, but these are
certainly amongst the most common. Most have system functions
defined by the kernel, but there are a few signals reserved for users
to use for their own purposes within their programs (SIGUSR).

Chapter 6. Virtual Memory
1 What Virtual Memory isn't
Virtual memory is often naively discussed as a way to extended your
RAM by using the hard drive as extra, slower, system memory. That
is, once your system runs out of memory, it flows over onto the hard
drive which is used as "virtual" memory.

In modern operating systems, this is commonly referred to as swap
space, because unused parts of memory as swapped out to disk to
free up main memory (remember, programs can only execute from
main memory).

Indeed, the ability to swap out memory to disk is an important
capability, but as you will see it is not the purpose of virtual memory,
but rather a very useful side effect!

2 What virtual memory is
Virtual memory is all about making use of address space.

The address space of a processor refers the range of possible
addresses that it can use when loading and storing to memory. The
address space is limited by the width of the registers, since as we
know to load an address we need to issue a load instruction with the
address to load from stored in a register. For example, registers that
are 32 bits wide can hold addresses in a register range from
0x00000000 to 0xFFFFFFF . 2^32 is equal to 4GB, so a 32 bit processor

can load or store to up to 4GB of memory.

Computer Science from the Bottom Up

154

2.1 64 bit computing
New processors are generally all 64-bit processors, which as the
name suggests has registers 64 bits wide. As an exercise, you should
work out the address space available to these processors (hint: it is
big!).

64-bit computing does have some trade-offs against using smaller bit-
width processors. Every program compiled in 64-bit mode requires
8-byte pointers, which can increase code and data size, and hence
impact both instruction and data cache performance. However, 64-bit
processors tend to have more registers, which means less need to
save temporary variables to memory when the compiler is under
register pressure.

2.1.1 Canonical Addresses
While 64-bit processors have 64-bit wide registers, systems generally
do not implement all 64-bits for addressing — it is not actually
possible to do load or store to all 16 exabytes of theoretical physical
memory!

Thus most architectures define an unimplemented region of the
address space which the processor will consider invalid for use.
x86-64 and Itanium both define the most-significant valid bit of an
address, which must then be sign-extended (see Section 2.3.1.3.1,
Sign-extension) to create a valid address. The result of this is that the
total address space is effectively divided into two parts, an upper and
a lower portion, with the addresses in-between considered invalid.
This is illustrated in Figure 2.1.1.1, Illustration of canonical
addresses. Valid addresses are termed canonical addresses (invalid
addresses being non-canonical).

Computer Science from the Bottom Up

155

Implementations define the most significant
implemented bit, which must be
sign-extended to create a full address

This has the effect of partitioning
the total address space into an
upper and lower portion, with
addresses inbetween considered
invalid

0000000...

1111111... 1

0

All higher bits must be the same as this bit

Unimplemented bits Most significant implemented bit

Full address

Figure 2.1.1.1 Illustration of canonical addresses

The exact most-significant bit value for the processor can usually be
found by querying the processor itself using its informational
instructions. Although the exact value is implementation dependent, a
typical value would be 48; providing 248 = 256 TiB of usable address-
space.

Reducing the possible address-space like this means that significant
savings can be made with all parts of the addressing logic in the
processor and related components, as they know they will not need to
deal with full 64-bit addresses. Since the implementation defines the
upper-bits as being signed-extended, this prevents portable operating
systems using these bits to store or flag additional information and
ensuring compatibility if the implementation wishes to implement
more address-space in the future.

2.2 Using the address space
As with most components of the operating system, virtual memory

Computer Science from the Bottom Up

156

acts as an abstraction between the address space and the physical
memory available in the system. This means that when a program
uses an address that address does not refer to the bits in an actual
physical location in memory.

So to this end, we say that all addresses a program uses are virtual.
The operating system keeps track of virtual addresses and how they
are allocated to physical addresses. When a program does a load or
store from an address, the processor and operating system work
together to convert this virtual address to the actual address in the
system memory chips.

3 Pages
The total address-space is divided into individual pages. Pages can be
many different sizes; generally they are around 4 KiB, but this is not a
hard and fast rule and they can be much larger but generally not any
smaller. The page is the smallest unit of memory that the operating
system and hardware can deal with.

Additionally, each page has a number of attributes set by the
operating system. Generally, these include read, write and execute
permissions for the current page. For example, the operating system
can generally mark the code pages of a process with an executable
flag and the processor can choose to not execute any code from pages
without this bit set.

Page

Page

Page

Page

Virtual Address Space

Figure 3.1 Virtual memory pages

Programmers may at this point be thinking that they can easily
allocate small amounts of memory, much smaller than 4 KiB, using
malloc or similar calls. This heap memory is actually backed by page-

Computer Science from the Bottom Up

157

size allocations, which the malloc implementation divides up and
manages for you in an efficient manner.

4 Physical Memory
Just as the operating system divides the possible address space up
into pages, it divides the available physical memory up into frames. A
frame is just the conventional name for a hunk of physical memory
the same size as the system page size.

The operating system keeps a frame-table which is a list of all
possible pages of physical memory and if they are free (available for
allocation) or not. When memory is allocated to a process, it is
marked as used in the frame-table. In this way, the operating-system
keeps track of all memory allocations.

How does the operating system know what memory is available? This
information about where memory is located, how much, attributes
and so forth is passed to the operating system by the BIOS during
initialisation.

5 Pages + Frames = Page
Tables
It is the job of the operating system is to keep track of which of
virtual-page points to which physical frame. This information is kept
in a page-table which, in its simplest form, could simply be a table
where each row contains its associated frame — this is termed a
linear page-table. If you were to use this simple system, with a 32 bit
address-space and 4 KiB pages there would be 1048576 possible
pages to keep track of in the page table (232 ÷ 4096); hence the table
would be 1048576 entries long to ensure we can always map a virtual
page to a physical page.

Page tables can have many different structures and are highly
optimised, as the process of finding a page in the page table can be a
lengthy process. We will examine page-tables in more depth later.

The page-table for a process is under the exclusive control of the
operating system. When a process requests memory, the operating
system finds it a free page of physical memory and records the
virtual-to-physical translation in the processes page-table. Conversely,
when the process gives up memory, the virtual-to-physical record is
removed and the underlying frame becomes free for allocation to

Computer Science from the Bottom Up

158

another process.

6 Virtual Addresses
When a program accesses memory, it does not know or care where
the physical memory backing the address is stored. It knows it is up
to the operating system and hardware to work together to map locate
the right physical address and thus provide access to the data it
wants. Thus we term the address a program is using to access
memory a virtual address. A virtual address consists of two parts; the
page and an offset into that page.

6.1 Page
Since the entire possible address space is divided up into regular
sized pages, every possible address resides within a page. The page
component of the virtual address acts as an index into the page table.
Since the page is the smallest unit of memory allocation within the
system there is a trade-off between making pages very small, and
thus having very many pages for the operating-system to manage,
and making pages larger but potentially wasting memory

6.2 Offset
The last bits of the virtual address are called the offset which is the
location difference between the byte address you want and the start
of the page. You require enough bits in the offset to be able to get to
any byte in the page. For a 4K page you require (4K == (4 * 1024) ==
4096 == 212 ==) 12 bits of offset. Remember that the smallest
amount of memory that the operating system or hardware deals with
is a page, so each of these 4096 bytes reside within a single page and
are dealt with as "one".

6.3 Virtual Address Translation
Virtual address translation refers to the process of finding out which
physical page maps to which virtual page.

When translating a virtual-address to a physical-address we only deal
with the page number . The essence of the procedure is to take the
page number of the given address and look it up in the page-table to
find a pointer to a physical address, to which the offset from the
virtual address is added, giving the actual location in system memory.

Computer Science from the Bottom Up

159

Since the page-tables are under the control of the operating system, if
the virtual-address doesn't exist in the page-table then the operating-
system knows the process is trying to access memory that has not
been allocated to it and the access will not be allowed.

OffsetPage Pointer

Virtual Address

Physical Page Frames
(System Memory)

Page Table

Physical Page Number

Physical Page Number

Physical Page Number

Page

Page

Page

Figure 6.3.1 Virtual Address Translation

We can follow this through for our previous example of a simple linear
page-table. We calculated that a 32-bit address-space would require a
table of 1048576 entries when using 4KiB pages. Thus to map a
theoretical address of 0x80001234, the first step would be to remove
the offset bits. In this case, with 4KiB pages, we know we have 12-bits
(212 == 4096) of offset. So we would right-shift out 12-bits of the
virtual address, leaving us with 0x80001. Thus (in decimal) the value
in row 524289 of the linear page table would be the physical frame
corresponding to this page.

Computer Science from the Bottom Up

160

You might see a problem with a linear page-table: since every page
must be accounted for, whether in use or not, a physically linear
page-table is completely impractical with a 64-bit address space.
Consider a 64-bit address space divided into 64 KiB pages creates
264/216 = 252 pages to be managed; assuming each page requires an
8-byte pointer to a physical location a total of 252*23 = 255 or 32 PiB
of contiguous memory would be required just for the page table!
There are ways to split addressing up that avoid this which we will
discuss later.

7 Consequences of virtual
addresses, pages and page
tables
Virtual addressing, pages and page-tables are the basis of every
modern operating system. It under-pins most of the things we use our
systems for.

7.1 Individual address spaces
By giving each process its own page table, every process can pretend
that it has access to the entire address space available from the
processor. It doesn't matter that two processes might use the same
address, since different page-tables for each process will map it to a
different frame of physical memory. Every modern operating system
provides each process with its own address space like this.

Over time, physical memory becomes fragmented, meaning that there
are "holes" of free space in the physical memory. Having to work
around these holes would be at best annoying and would become a
serious limit to programmers. For example, if you malloc 8 KiB of
memory; requiring the backing of two 4 KiB frames, it would be a
huge unconvinced if those frames had to be contiguous (i.e.,
physically next to each other). Using virtual-addresses it does not
matter; as far as the process is concerned it has 8 KiB of contiguous
memory, even if those pages are backed by frames very far apart. By
assigning a virtual address space to each process the programmer
can leave working around fragmentation up to the operating system.

7.2 Protection
We previously mentioned that the virtual mode of the 386 processor is

Computer Science from the Bottom Up

161

called protected mode, and this name arises from the protection that
virtual memory can offer to processes running on it.

In a system without virtual memory, every process has complete
access to all of system memory. This means that there is nothing
stopping one process from overwriting another processes memory,
causing it to crash (or perhaps worse, return incorrect values,
especially if that program is managing your bank account!)

This level of protection is provided because the operating system is
now the layer of abstraction between the process and memory access.
If a process gives a virtual address that is not covered by its page-
table, then the operating system knows that that process is doing
something wrong and can inform the process it has stepped out of its
bounds.

Since each page has extra attributes, a page can be set read only,
write only or have any number of other interesting properties. When
the process tries to access the page, the operating system can check
if it has sufficient permissions and stop it if it does not (writing to a
read only page, for example).

Systems that use virtual memory are inherently more stable because,
assuming the perfect operating system, a process can only crash itself
and not the entire system (of course, humans write operating systems
and we inevitably overlook bugs that can still cause entire systems to
crash).

7.3 Swap
We can also now see how the swap memory is implemented. If instead
of pointing to an area of system memory the page pointer can be
changed to point to a location on a disk.

When this page is referenced, the operating system needs to move it
from the disk back into system memory (remember, program code can
only execute from system memory). If system memory is full, then
another page needs to be kicked out of system memory and put into
the swap disk before the required page can be put in memory. If
another process wants that page that was just kicked out back again,
the process repeats.

This can be a major issue for swap memory. Loading from the hard
disk is very slow (compared to operations done in memory) and most
people will be familiar with sitting in front of the computer whilst the
hard disk churns and churns whilst the system remains unresponsive.

Computer Science from the Bottom Up

162

7.3.1 mmap
A different but related process is the memory map, or mmap (from the
system call name). If instead of the page table pointing to physical
memory or swap the page table points to a file, on disk, we say the
file is mmap ed.

Normally, you need to open a file on disk to obtain a file descriptor,
and then read and write it in a sequential form. When a file is
mmaped it can be accessed just like system RAM.

7.4 Sharing memory
Usually, each process gets its own page table, so any address it uses
is mapped to a unique frame in physical memory. But what if the
operating system points two page table-entries to the same frame?
This means that this frame will be shared; and any changes that one
process makes will be visible to the other.

You can see now how threads are implemented. In Section 4.3.1,
clone we said that the Linux clone() function could share as much

or as little of a new process with the old process as it required. If a
process calls clone() to create a new process, but requests that the
two processes share the same page table, then you effectively have a
thread as both processes see the same underlying physical memory.

You can also see now how copy on write is done. If you set the
permissions of a page to be read-only, when a process tries to write to
the page the operating system will be notified. If it knows that this
page is a copy-on-write page, then it needs to make a new copy of the
page in system memory and point the page in the page table to this
new page. This can then have its attributes updated to have write
permissions and the process has its own unique copy of the page.

7.5 Disk Cache
In a modern system, it is often the case that rather than having too
little memory and having to swap memory out, there is more memory
available than the system is currently using.

The memory hierarchy tells us that disk access is much slower than
memory access, so it makes sense to move as much data from disk
into system memory if possible.

Linux, and many other systems, will copy data from files on disk into
memory when they are used. Even if a program only initially requests
a small part of the file, it is highly likely that as it continues

Computer Science from the Bottom Up

163

processing it will want to access the rest of file. When the operating
system has to read or write to a file, it first checks if the file is in its
memory cache.

These pages should be the first to be removed as memory pressure in
the system increases.

7.5.1 Page Cache
A term you might hear when discussing the kernel is the page cache.

The page cache refers to a list of pages the kernel keeps that refer to
files on disk. From above, swap page, mmaped pages and disk cache
pages all fall into this category. The kernel keeps this list because it
needs to be able to look them up quickly in response to read and
write requests XXX: this bit doesn't file?

8 Hardware Support
So far, we have only mentioned that hardware works with the
operating system to implement virtual memory. However we have
glossed over the details of exactly how this happens.

Virtual memory is necessarily quite dependent on the hardware
architecture, and each architecture has its own subtleties. However,
there are are a few universal elements to virtual memory in
hardware.

8.1 Physical v Virtual Mode
All processors have some concept of either operating in physical or
virtual mode. In physical mode, the hardware expects that any
address will refer to an address in actual system memory. In virtual
mode, the hardware knows that addresses will need to be translated
to find their physical address.

In many processors, this two modes are simply referred to as physical
and virtual mode. Itanium is one such example. The most common
processor, the x86, has a lot of baggage from days before virtual
memory and so the two modes are referred to as real and protected
mode. The first processor to implement protected mode was the 386,
and even the most modern processors in the x86 family line can still
do real mode, though it is not used. In real mode the processor
implements a form of memory organisation called segmentation.

Computer Science from the Bottom Up

164

8.1.1 Issues with segmentation
Segmentation is really only interesting as a historical note, since
virtual memory has made it less relevant. Segmentation has a number
of drawbacks, not the least of which it is very confusing for
inexperienced programmers, which virtual memory systems were
largely invented to get around.

In segmentation there are a number of registers which hold an
address that is the start of a segment. The only way to get to an
address in memory is to specify it as an offset from one of these
segment registers. The size of the segment (and hence the maximum
offset you can specify) is determined by the number of bits available
to offset from segment base register. In the x86, the maximum offset
is 16 bits, or only 64K1 . This causes all sorts of havoc if one wants to
use an address that is more than 64K away, which as memory grew
into the megabytes (and now gigabytes) became more than a slight
inconvenience to a complete failure.

1. Imagine that the maximum offset was 32 bits; in this case the entire
address space could be accessed as an offset from a segment at
0x00000000 and you would essentially have a flat layout -- but it still isn't

as good as virtual memory as you will see. In fact, the only reason it is
16 bits is because the original Intel processors were limited to this, and
the chips maintain backwards compatibility.

Computer Science from the Bottom Up

165

Segment Register

Segment Register

Segment Register

How do we get this address?

CPU

Figure 8.1.1.1 Segmentation

In the above figure, there are three segment registers which are all
pointing to segments. The maximum offset (constrained by the
number of bits available) is shown by shading. If the program wants
an address outside this range, the segment registers must be
reconfigured. This quickly becomes a major annoyance. Virtual
memory, on the other hand, allows the program to specify any
address and the operating system and hardware do the hard work of
translating to a physical address.

8.2 The TLB
The Translation Lookaside Buffer (or TLB for short) is the main
component of the processor responsible for virtual-memory. It is a
cache of virtual-page to physical-frame translations inside the
processor. The operating system and hardware work together to
manage the TLB as the system runs.

8.2.1 Page Faults
When a virtual address is requested of the hardware — say via a load
instruction requesting to get some data — the processor looks for the

Computer Science from the Bottom Up

166

virtual-address to physical-address translation in its TLB. If it has a
valid translation it can then combine this with the offset portion to go
straight to the physical address and complete the load.

However, if the processor can not find a translation in the TLB, the
processor must raise a page fault. This is similar to an interrupt (as
discussed before) which the operating system must handle.

When the operating system gets a page fault, it needs to go through
its page-table to find the correct translation and insert it into the TLB.

In the case that the operating system can not find a translation in the
page table, or alternatively if the operating system checks the
permissions of the page in question and the process is not authorised
to access it, the operating system must kill the process. If you have
ever seen a segmentation fault (or a segfault) this is the operating
system killing a process that has overstepped its bounds.

Should the translation be found, and the TLB currently be full, then
one translation needs to be removed before another can be inserted.
It does not make sense to remove a translation that is likely to be
used in the future, as you will incur the cost of finding the entry in the
page-tables all over again. TLBs usually use something like a Least
Recently Used or LRU algorithm, where the oldest translation that
has not been used is ejected in favour of the new one.

The access can then be tried again, and, all going well, should be
found in the TLB and translated correctly.

8.2.1.1 Finding the page table

When we say that the operating system finds the translation in the
page table, it is logical to ask how the operating system finds the
memory that has the page table.

The base of the page table will be kept in a register associated with
each process. This is usually called the page-table base-register or
similar. By taking the address in this register and adding the page
number to it, the correct entry can be located.

8.2.2 Other page related faults
There are two other important faults that the TLB can generally
generate which help to mange accessed and dirty pages. Each page
generally contains an attribute in the form of a single bit which flags
if the page has been accessed or is dirty.

An accessed page is simply any page that has been accessed. When a
page translation is initially loaded into the TLB the page can be

Computer Science from the Bottom Up

167

marked as having been accessed (else why were you loading it in?1)

The operating system can periodically go through all the pages and
clear the accessed bit to get an idea of what pages are currently in
use. When system memory becomes full and it comes time for the
operating system to choose pages to be swapped out to disk,
obviously those pages whose accessed bit has not been reset are the
best candidates for removal, because they have not been used the
longest.

A dirty page is one that has data written to it, and so does not match
any data already on disk. For example, if a page is loaded in from
swap and then written to by a process, before it can be moved out of
swap it needs to have its on disk copy updated. A page that is clean
has had no changes, so we do not need the overhead of copying the
page back to disk.

Both are similar in that they help the operating system to manage
pages. The general concept is that a page has two extra bits; the dirty
bit and the accessed bit. When the page is put into the TLB, these bits
are set to indicate that the CPU should raise a fault .

When a process tries to reference memory, the hardware does the
usual translation process. However, it also does an extra check to see
if the accessed flag is not set. If so, it raises a fault to the operating
system, which should set the bit and allow the process to continue.
Similarly if the hardware detects that it is writing to a page that does
not have the dirty bit set, it will raise a fault for the operating system
to mark the page as dirty.

8.3 TLB Management
We can say that the TLB used by the hardware but managed by
software. It is up to the operating system to load the TLB with correct
entries and remove old entries.

8.3.1 Flushing the TLB
The process of removing entries from the TLB is called flushing.
Updating the TLB is a crucial part of maintaining separate address
spaces for processes; since each process can be using the same
virtual address not updating the TLB would mean a process might

1. Actually, if you were loading it in without a pending access this would be
called speculation, which is where you do something with the
expectation that it will pay off. For example, if code was reading along
memory linearly putting the next page translation in the TLB might save
time and give a performance improvement.

Computer Science from the Bottom Up

168

end up overwriting another processes memory (conversely, in the
case of threads sharing the address-space is what you want, thus the
TLB is not flushed when switching between threads in the same
process).

On some processors, every time there is a context switch the entire
TLB is flushed. This can be quite expensive, since this means the new
process will have to go through the whole process of taking a page
fault, finding the page in the page tables and inserting the
translation.

Other processors implement an extra address space ID (ASID) which
is added to each TLB translation to make it unique. This means each
address space (usually each process, but remember threads want to
share the same address space) gets its own ID which is stored along
with any translations in the TLB. Thus on a context switch the TLB
does not need to be flushed, since the next process will have a
different address space ID and even if it asks for the same virtual
address, the address space ID will differ and so the translation to
physical page will be different. This scheme reduces flushing and
increases overall system performance, but requires more TLB
hardware to hold the ASID bits.

Generally, this is implemented by having an additional register as part
of the process state that includes the ASID. When performing a
virtual-to-physical translation, the TLB consults this register and will
only match those entries that have the same ASID as the currently
running process. Of course the width of this register determines the
number of ASID's available and thus has performance implications.
For an example of ASID's in a processor architecture see
Section 10.2.1, Address spaces.

8.3.2 Hardware v Software loaded TLB
While the control of what ends up in the TLB is the domain of the
operating system; it is not the whole story. The process described in
Section 8.2.1, Page Faults describes a page-fault being raised to the
operating system, which traverses the page-table to find the virtual-
to-physical translation and installs it in the TLB. This would be
termed a software-loaded TLB — but there is another alternative; the
hardware-loaded TLB.

In a hardware loaded TLB, the processor architecture defines a
particular layout of page-table information (Section 5, Pages +
Frames = Page Tables which must be followed for virtual address
translation to proceed. In response to access to a virtual-address that
is not present in the TLB, the processor will automatically walk the
page-tables to load the correct translation entry. Only if the
translation entry does not exist will the processor raise an exception

Computer Science from the Bottom Up

169

to be handled by the operating system.

Implementing the page-table traversal in specialised hardware gives
speed advantages when finding translations, but removes flexibility
from operating-systems implementors who might like to implement
alternative schemes for page-tables.

All architectures can be broadly categorised into these two
methodologies. Later, we will examine some common architectures
and their virtual-memory support.

9 Linux Specifics
Although the basic concepts of virtual memory remain constant, the
specifics of implementations are highly dependent on the operating
system and hardware.

9.1 Address Space Layout
Linux divides the available address space up into a shared kernel
component and private user space addresses. This means that
addresses in the kernel port of the address space map to the same
physical memory for each process, whilst user-space addresses are
private to the process. On Linux, the shared kernel space is at the
very top of the available address space. On the most common
processor, the 32 bit x86, this split happens at the 3GB point. As 32
bits can map a maximum of 4GB, this leaves the top 1GB for the
shared kernel region1.

1. This is unfortunately an over-simplification, because many machines
wanted to support more than 4GB per process. High memory support
allows processors to get access to a full 4GB via special extensions.

Computer Science from the Bottom Up

170

Kernel

Process Process Process Process

Physical
Memory

Pr
oc

es
so

r
Ad

dr
es

s
Sp

ac
e

(Shared)

Kernel Space

User Space

(Private)

Pages

Physical Memory Frame

Figure 9.1.1 Linux address space layout

9.2 Three Level Page Table
There are many different ways for an operating system to organise
the page tables but Linux chooses to use a hierarchical system.

As the page tables use a hierarchy that is three levels deep, the Linux
scheme is most commonly referred to as the three level page table.
The three level page table has proven to be robust choice, although it
is not without its criticism. The details of the virtual memory
implementation of each processor vary Whitley meaning that the
generic page table Linux chooses must be portable and relatively
generic.

The concept of the three level page table is not difficult. We already
know that a virtual address consists of a page number and an offset in

Computer Science from the Bottom Up

171

the physical memory page. In a three level page table, the virtual
address is further split up into a number levels.

Each level is a page table of its own right; i.e. it maps a page number
of a physical page. In a single level page table the "level 1" entry
would directly map to the physical frame. In the multilevel version
each of the upper levels gives the address of the physical memory
frame holding the next lower levels page table.

Level 1

Page Physical Page

Page Physical Page

Level 2

Page Physical Page

Page Physical Page

Level 3

Page Physical Page

Page Physical Page

Offset

Virtual Address

Level 3Level 2Level 1

Figure 9.2.1 Linux Three Level Page Table

So a sample reference involves going to the top level page table,
finding the physical frame that the next level address is on, reading
that levels table and finding the physical frame that the next levels
page table lives on, and so on.

Computer Science from the Bottom Up

172

At first, this model seems to be needlessly complex. The main reason
this model is implemented is for size considerations. Imagine the
theoretical situation of a process with only one single page mapped
right near the end of its virtual address space. We said before that the
page table entry is found as an offset from the page table base
register, so the page table needs to be a contiguous array in memory.
So the single page near the end of the address space requires the
entire array, which might take up considerable space (many, many
physical pages of memory).

In a three level system, the first level is only one physical frame of
memory. This maps to a second level, which is again only a single
frame of memory, and again with the third. Consequently, the three
level system reduces the number of pages required to only a fraction
of those required for the single level system.

There are obvious disadvantages to the system. Looking up a single
address takes more references, which can be expensive. Linux
understands that this system may not be appropriate on many
different types of processor, so each architecture can collapse the
page table to have less levels easily (for example, the most common
architecture, the x86, only uses a two level system in its
implementation).

10 Hardware support for virtual
memory
As covered in Section 8.2, The TLB, the processor hardware provides
a lookup-table that links virtual addresses to physical addresses. Each
processor architecture defines different ways to manage the TLB with
various advantages and disadvantages.

The part of the processor that deals with virtual memory is generally
referred to as the Memory Management Unit or MMU

10.1 x86-64
XXX

10.2 Itanium
The Itanium MMU provides many interesting features for the
operating system to work with virtual memory.

Computer Science from the Bottom Up

173

10.2.1 Address spaces
Section 8.3.1, Flushing the TLB introduced the concept of the
address-space ID to reduce the overheads of flushing the TLB when
context switching. However, programmers often use threads to allow
execution contexts to share an address space. Each thread has the
same ASID and hence shares TLB entries, leading to increased
performance. However, a single ASID prevents the TLB from
enforcing protection; sharing becomes an "all or nothing" approach.
To share even a few bytes, threads must forgo all protection from
each other (see also Section 7.2, Protection).

Region 0

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6

Region 7

Protection Keys

Region Registers

Protection Keys

Region Registers

Shared Region0x1000 0x1000

Shared Key

Process 1 Process 2

Figure 10.2.1.1 Illustration Itanium regions and protection
keys

The Itanium MMU considers these problems and provides the ability

Computer Science from the Bottom Up

174

to share an address space (and hence translation entries) at a much
lower granularity whilst still maintaining protection within the
hardware. The Itanium divides the 64-bit address space up into 8
regions, as illustrated in Figure 10.2.1.1, Illustration Itanium regions
and protection keys. Each process has eight 24-bit region registers as
part of its state, which each hold a region ID (RID) for each of the
eight regions of the process address space. TLB translations are
tagged with the RID and thus will only match if the process also holds
this RID, as illustrated in Figure 10.2.1.2, Illustration of Itanium TLB
translation.

Region ID Key Virtual Page # (VPN) Rights Physical Page # (PPN)

Translation Lookaside Buffer (TLB)

Key Rights Protection
Key Registers

Virtual Address

Physical Page # (PPN)

Physical Address

Offset

Search Search

Search

Index Virtual
Page # (VPN)Virtual Region # (VRN)

Region Registers

Region ID

Figure 10.2.1.2 Illustration of Itanium TLB translation

Further to this, the top three bits (the region bits) are not considered
in virtual address translation. Therefore, if two processes share a RID
(i.e., hold the same value in one of their region registers) then they
have an aliased view of that region. For example, if process-A holds
RID 0x100 in region-register 3 and process-B holds the same RID

Computer Science from the Bottom Up

175

0x100 in region-register 5 then process-A, region 3 is aliased to
process-B, region 5. This limited sharing means both processes
receive the benefits of shared TLB entries without having to grant
access to their entire address space.

10.2.1.1 Protection Keys

To allow for even finer grained sharing, each TLB entry on the
Itanium is also tagged with a protection key. Each process has an
additional number of protection key registers under operating-system
control.

When a series of pages is to be shared (e.g., code for a shared system
library), each page is tagged with a unique key and the OS grants any
processes allowed to access the pages that key. When a page is
referenced the TLB will check the key associated with the translation
entry against the keys the process holds in its protection key
registers, allowing the access if the key is present or otherwise
raising a protection fault to the operating system.

The key can also enforce permissions; for example, one process may
have a key which grants write permissions and another may have a
read-only key. This allows for sharing of translation entries in a much
wider range of situations with granularity right down to a single-page
level, leading to large potential improvements in TLB performance.

10.2.2 Itanium Hardware Page-Table Walker
Switching context to the OS when resolving a TLB miss adds
significant overhead to the fault processing path. To combat this,
Itanium allows the option of using built-in hardware to read the page-
table and automatically load virtual-to-physical translations into the
TLB. The hardware page-table walker (HPW) avoids the expensive
transition to the OS, but requires translations to be in a fixed format
suitable for the hardware to understand.

The Itanium HPW is referred to in Intel's documentation as the
virtually hashed page-table walker or VHPT walker, for reasons which
should become clear. Itanium gives developers the option of two
mutually exclusive HPW implementations; one based on a virtual
linear page-table and the other based on a hash table.

It should be noted it is possible to operate with no hardware page-
table walker; in this case each TLB miss is resolved by the OS and the
processor becomes a software-loaded architecture. However, the
performance impact of disabling the HPW is so considerable it is very
unlikely any benefit could be gained from doing so

Computer Science from the Bottom Up

176

10.2.2.1 Virtual Linear Page-Table

The virtual linear page-table implementation is referred to in
documentation as the short format virtually hashed page-table (SF-
VHPT). It is the default HPW model used by Linux on Itanium.

The usual solution is a multi-level or hierarchical page-table, where
the bits comprising the virtual page number are used as an index into
intermediate levels of the page-table (see Section 9.2, Three Level
Page Table). Empty regions of the virtual address space simply do not
exist in the hierarchical page-table. Compared to a linear page-table,
for the (realistic) case of a tightly-clustered and sparsely-filled
address space, relatively little space is wasted in overheads. The
major disadvantage is the multiple memory references required for
lookup.

Computer Science from the Bottom Up

177

0x123400

0x4000x123

0x1 0x2 0x3 0x400

Virtual Address

Virtual Page Number Offset

Page Global Directory Page Middle Directory Page Translation Entries

Page Size

Page Table Base

Figure 10.2.2.1.1 Illustration of a hierarchical page-table

With a 64-bit address space, even a 512~GiB linear table identified in
Section 6.3, Virtual Address Translation takes only 0.003% of the
16-exabytes available. Thus a virtual linear page-table (VLPT) can be
created in a contiguous area of virtual address space.

Computer Science from the Bottom Up

178

Just as for a physically linear page-table, on a TLB miss the hardware
uses the virtual page number to offset from the page-table base. If
this entry is valid, the translation is read and inserted directly into
the TLB. However, with a VLPT the address of the translation entry is
itself a virtual address and thus there is the possibility that the virtual
page which it resides in is not present in the TLB. In this case a
nested fault is raised to the operating system. The software must then
correct this fault by mapping the page holding the translation entry
into the VLPT.

PGD

PTE's for a contiguous

region of virtual addresses

Conceptual view of a
hierarchial page table

Physical Frames Virtual Address Space

B
L
T

PMD PMD

PTE PTE

PMD

PGD

PTE

PTE

PTE

PTE

Figure 10.2.2.1.2 Itanium short-format VHPT
implementation

This process can be made quite straight forward if the operating

Computer Science from the Bottom Up

179

system keeps a hierarchical page-table. The leaf page of a
hierarchical page-table holds translation entries for a virtually
contiguous region of addresses and can thus be mapped by the TLB
to create the VLPT as described in Figure 10.2.2.1.2, Itanium short-
format VHPT implementation.

VPN

64 bits

VPN

Hash

PPN PPN

Tag

PKEY psize

Chain

4 x 64 bits

Short Format Long Format

Global VHPTPer-region VHPT

Figure 10.2.2.1.3 Itanium PTE entry formats

The major advantage of a VLPT occurs when an application makes
repeated or contiguous accesses to memory. Consider that for a walk
of virtually contiguous memory, the first fault will map a page full of
translation entries into the virtual linear page-table. A subsequent
access to the next virtual page will require the next translation entry
to be loaded into the TLB, which is now available in the VLPT and
thus loaded very quickly and without invoking the operating system.
Overall, this will be an advantage if the cost of the initial nested fault
is amortised over subsequent HPW hits.

The major drawback is that the VLPT now requires TLB entries which
causes an increase on TLB pressure. Since each address space
requires its own page table the overheads become greater as the
system becomes more active. However, any increase in TLB capacity
misses should be more than regained in lower refill costs from the
efficient hardware walker. Note that a pathological case could skip
over page_size ÷ translation_size entries, causing repeated nested
faults, but this is a very unlikely access pattern.

The hardware walker expects translation entries in a specific format
as illustrated on the left of Figure 10.2.2.1.3, Itanium PTE entry

Computer Science from the Bottom Up

180

formats. The VLPT requires translations in the so-called 8-byte short
format. If the operating system is to use its page-table as backing for
the VLPT (as in Figure 10.2.2.1.2, Itanium short-format VHPT
implementation) it must use this translation format. The architecture
describes a limited number of bits in this format as ignored and thus
available for use by software, but significant modification is not
possible.

A linear page-table is premised on the idea of a fixed page size.
Multiple page-size support is problematic since it means the
translation for a given virtual page is no longer at a constant offset.
To combat this, each of the 8-regions of the address space
(Figure 10.2.1.1, Illustration Itanium regions and protection keys) has
a separate VLPT which only maps addresses for that region. A default
page-size can be given for each region (indeed, with Linux HugeTLB,
discussed below, one region is dedicated to larger pages). However,
page sizes can not be mixed within a region.

10.2.2.2 Virtual Hash Table

Using TLB entries in an effort to reduce TLB refill costs, as done with
the SF-VHPT, may or may not be an effective trade-off. Itanium also
implements a hashed page-table with the potential to lower TLB
overheads. In this scheme, the processor hashes a virtual address to
find an offset into a contiguous table.

The previously described physically linear page-table can be
considered a hash page-table with a perfect hash function which will
never produce a collision. However, as explained, this requires an
impractical trade-off of huge areas of contiguous physical memory.
However, constraining the memory requirements of the page table
raises the possibility of collisions when two virtual addresses hash to
the same offset. Colliding translations require a chain pointer to build
a linked-list of alternative possible entries. To distinguish which entry
in the linked-list is the correct one requires a tag derived from the
incoming virtual address.

The extra information required for each translation entry gives rise to
the moniker long-format~VHPT (LF-VHPT). Translation entries grow
to 32-bytes as illustrated on the right hand side of Figure 10.2.2.1.3,
Itanium PTE entry formats.

The main advantage of this approach is the global hash table can be
pinned with a single TLB entry. Since all processes share the table it
should scale better than the SF-VHPT, where each process requires
increasing numbers of TLB entries for VLPT pages. However, the
larger entries are less cache friendly; consider we can fit four 8-byte
short-format entries for every 32-byte long-format entry. The very
large caches on the Itanium processor may help mitigate this impact,
however.

Computer Science from the Bottom Up

181

One advantage of the SF-VHPT is that the operating system can keep
translations in a hierarchical page-table and, as long as the hardware
translation format is maintained, can map leaf pages directly to the
VLPT. With the LF-VHPT the OS must either use the hash table as the
primary source of translation entries or otherwise keep the hash table
as a cache of its own translation information. Keeping the LF-VHPT
hash table as a cache is somewhat sub-optimal because of increased
overheads on time critical fault paths, however advantages are
gained from the table requiring only a single TLB entry.

Chapter 7. The Toolchain
1 Compiled v Interpreted
Programs
1.1 Compiled Programs
So far we have discussed how a program is loaded into virtual
memory, started as a process kept track of by the operating system
and interacts with via system calls.

A program that can be loaded directly into memory needs to be in a
straight binary format. The process of converting source code,
written in a language such as C, to a binary file ready to be executed
is called compiling. Not surprisingly, the process is done by a
compiler; the most widespread example being gcc.

1.2 Interpreted programs
Compiled programs have some disadvantages for modern software
development. Every time a developer makes a change, the compiler
must be invoked to recreate the executable file. It is a logical
extension to design a compiled program that can read another
program listing and execute the code line by line.

We call this type of compiled program a interpreter because it
interprets each line of the input file and executes it as code. This way
the program does not need to be compiled, and any changes will be
seen the next time the interpreter runs the code.

For their convenience, interpreted programs usually run slower than
a compiled counterpart. The overhead in the program reading and
interpreting the code each time is only encountered once for a

Computer Science from the Bottom Up

182

compiled program, whilst an interpreted program encounters it each
time it is run.

But interpreted languages have many positive aspects. Many
interpreted languages actually run in a virtual machine that is
abstracted from the underlying hardware. Python and Perl 6 are
languages that implement a virtual machine that interpreted code
runs on.

1.2.1 Virtual Machines
A compiled program is completely dependent on the hardware of the
machine it is compiled for, since it must be able to simply be copied to
memory and executed. A virtual machine is an abstraction of
hardware into software.

For example, Java is a hybrid language that is partly compiled and
partly interpreted. Java code is complied into a program that runs
inside a Java Virtual Machine or more commonly referred to as a JVM.
This means that a compiled program can run on any hardware that
has a JVM written for it; so called write one, run anywhere.

2 Building an executable
When we talk about the compiler, there are actually three separate
steps involved in creating the executable file.

1. Compiling

2. Assembling

3. Linking

The components involved in this process are collectively called the
toolchain because the tools chain the output of one to the input of the
other to create the final output.

Each link in the chain takes the source code progressively closer to
being binary code suitable for execution.

Computer Science from the Bottom Up

183

3 Compiling
3.1 The process of compiling
The first step of compiling a source file to an executable file is
converting the code from the high level, human understandable
language to assembly code. We know from previous chapters than
assembly code works directly with the instructions and registers
provided by the processor.

The compiler is the most complex step of process for a number of
reasons. Firstly, humans are very unpredictable and have their source
code in many different forms. The compiler is only interested the
actual code, however humans need things like comments and
whitespace (spaces, tabs, indents, etc) to understand code. The
process that the compiler takes to convert the human-written source
code to its internal representation is called parsing.

3.1.1 C code
With C code, there is actually a step before parsing the source code
called the pre-processor. The pre-processor is at its core a text
replacement program. For example, any variable declared as #define
variable text will have variable replaced with text . This
preprocessed code is then passed into the compiler.

3.2 Syntax
Any computing language has a particular syntax that describes the
rules of the language. Both you and the compiler know the syntax
rules, and all going well you will understand each other. Humans,
being as they are, often forget the rules or break them, leading the
compiler to be unable to understand your intentions. For example, if
you were to leave the closing bracket off a if condition, the compiler
does not know where the actual conditional is.

Syntax is most often described in Backus-Naur Form (BNF)1 which is
a language with which you can describe languages!

1. In fact the most common form is Extended Backus-Naur Form, or EBNF,
as it allows some extra rules which are more suitable for modern
languages.

Computer Science from the Bottom Up

184

3.3 Assembly Generation
The job of the compiler is to translate the higher level language into
assembly code suitable for the target being compiled for. Obviously
each different architecture has a different instruction set, different
numbers of registers and different rules for correct operation.

3.3.1 Alignment

0 4 8 12

Memory

CPU

Aligned Unaligned

Registers

Figure 3.3.1.1 Alignment

Alignment of variables in memory is an important consideration for
the compiler. Systems programmers need to be aware of alignment
constraints to help the compiler create the most efficient code it can.

CPUs can generally not load a value into a register from an arbitrary
memory location. It requires that variables be aligned on certain
boundaries. In the example above, we can see how a 32 bit (4 byte)
value is loaded into a register on a machine that requires 4 byte
alignment of variables.

Computer Science from the Bottom Up

185

The first variable can be directly loaded into a register, as it falls
between 4 byte boundaries. The second variable, however, spans the
4 byte boundary. This means that at minimum two loads will be
required to get the variable into a single register; firstly the lower
half and then the upper half.

Some architectures, such as x86, can handle unaligned loads in
hardware and the only symptoms will be lower performance as the
hardware does the extra work to get the value into the register.
Others architectures can not have alignment rules violated and will
raise an exception which is generally caught by the operating system
which then has to manually load the register in parts, causing even
more overheads.

3.3.1.1 Structure Padding

Programmers need to consider alignment especially when creating
struct s. Whilst the compiler knows the alignment rules for the

architecture it is building for, at times programmers can cause sub-
optimal behaviour.

The C99 standard only says that structures will be ordered in memory
in the same order as they are specified in the declaration, and that in
an array of structures all elements will be the same size.

Computer Science from the Bottom Up

186

1 $ cat struct.c
#include <stdio.h>

struct a_struct {
5 char char_one;

char char_two;
int int_one;

};

10 int main(void)
{

struct a_struct s;

15 printf("%p : s.char_one\n" \
"%p : s.char_two\n" \
"%p : s.int_one\n", &s.char_one,
&s.char_two, &s.int_one);

20 return 0;

}

$ gcc -o struct struct.c
25

$ gcc -fpack-struct -o struct-packed struct.c

$./struct
0x7fdf6798 : s.char_one

30 0x7fdf6799 : s.char_two

Computer Science from the Bottom Up

187

0x7fdf679c : s.int_one

$./struct-packed
0x7fcd2778 : s.char_one

35 0x7fcd2779 : s.char_two
0x7fcd277a : s.int_one

Example 3.3.1.1.1 Struct padding example

In the example above, we contrive a structure that has two bytes
(chars followed by a 4 byte integer. The compiler pads the structure
as below.

0x7fdf6798 0x7fdf6799 0x7fdf679A 0x7fdf679B 0x7fdf679C 0x7fdf679D 0x7fdf679E 0x7fdf679F

s.int_one

s.char_two

s.char_one

Figure 3.3.1.1.1 Alignment

In the other example we direct the compiler not to pad structures and
correspondingly we can see that the integer starts directly after the
two chars .

3.3.1.2 Cache line alignment

We talked previously about aliasing in the cache, and how several
addresses may map to the same cache line. Programmers need to be
sure that when they write their programs they do not cause bouncing
of cache lines.

This situation occurs when a program constantly accesses two areas
of memory that map to the same cache line. This effectively wastes
the cache line, as it gets loaded in, used for a short time and then
must be kicked out and the other cache line loaded into the same
place in the cache.

Computer Science from the Bottom Up

188

Obviously if this situation repeats the performance will be
significantly reduced. The situation would be relieved if the
conflicting data was organised in slightly different ways to avoid the
cache line conflict.

One possible way to detect this sort of situation is profiling. When you
profile your code you "watch" it to analyse what code paths are taken
and how long they take to execute. With profile guided optimisation
(PGO) the compiler can put special extra bits of code in the first
binary it builds, which runs and makes a record of the branches
taken, etc. You can then recompile the binary with the extra
information to possibly create a better performing binary. Otherwise
the programmer can look at the output of the profile and possibly
detect situations such as cache line bouncing. (XXX somewhere else?)

3.3.1.3 Space - Speed Trade off

What the compiler has done above is traded off using some extra
memory to gain a speed improvement in running our code. The
compiler knows the rules of the architecture and can make decisions
about the best way to align data, possibly by trading off small
amounts of wasted memory for increased (or perhaps even just
correct) performance.

Consequently as a programmer you should never make assumptions
about the way variables and data will be laid out by the compiler. To
do so is not portable, as a different architecture may have different
rules and the compiler may make different decisions based on explicit
commands or optimisation levels.

3.3.1.4 Making Assumptions

Thus, as a C programmer you need to be familiar with what you can
assume about what the compiler will do and what may be variable.
What exactly you can assume and can not assume is detailed in the
C99 standard; if you are programming in C it is certainly worth the
investment in becoming familiar with the rules to avoid writing non-
portable or buggy code.

Computer Science from the Bottom Up

189

1 $ cat stack.c
#include <stdio.h>

struct a_struct {
5 int a;

int b;
};

int main(void)
10 {

int i;
struct a_struct s;
printf("%p\n%p\ndiff %ld\n", &i, &s, (unsigned long)&s - (unsigned long)&i);
return 0;

15 }
$ gcc-3.3 -Wall -o stack-3.3 ./stack.c
$ gcc-4.0 -o stack-4.0 stack.c

$./stack-3.3
20 0x60000fffffc2b510

0x60000fffffc2b520
diff 16

$./stack-4.0
25 0x60000fffff89b520

0x60000fffff89b524
diff 4

Example 3.3.1.4.1 Stack alignment example

In the example above, taken from an Itanium machine, we can see
that the padding and alignment of the stack has changed considerably
between gcc versions. This type of thing is to be expected and must

Computer Science from the Bottom Up

190

be considered by the programmer.

Generally you should ensure that you do not make assumptions about
the size of types or alignment rules.

3.3.1.5 C Idioms with alignment

There are a few common sequences of code that deal with alignment;
generally most programs will consider it in some ways. You may see
these "code idioms" in many places outside the kernel when dealing
with programs that deal with chunks of data in some form or another,
so it is worth investigating.

We can take some examples from the Linux kernel, which often has to
deal with alignment of pages of memory within the system.

Computer Science from the Bottom Up

191

1 [include/asm-ia64/page.h]

/*
* PAGE_SHIFT determines the actual kernel page size.

5 */
#if defined(CONFIG_IA64_PAGE_SIZE_4KB)
define PAGE_SHIFT 12
#elif defined(CONFIG_IA64_PAGE_SIZE_8KB)
define PAGE_SHIFT 13

10 #elif defined(CONFIG_IA64_PAGE_SIZE_16KB)
define PAGE_SHIFT 14
#elif defined(CONFIG_IA64_PAGE_SIZE_64KB)
define PAGE_SHIFT 16
#else

15 # error Unsupported page size!
#endif

#define PAGE_SIZE (__IA64_UL_CONST(1) << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE - 1))

20 #define PAGE_ALIGN(addr) (((addr) + PAGE_SIZE - 1) & PAGE_MASK)

Example 3.3.1.5.1 Page alignment manipulations

Above we can see that there are a number of different options for
page sizes within the kernel, ranging from 4KB through 64KB.

The PAGE_SIZE macro is fairly self explanatory, giving the current
page size selected within the system by shifting a value of 1 by the
shift number given (remember, this is the equivalent of saying 2n

where n is the PAGE_SHIFT).

Next we have a definition for PAGE_MASK . The PAGE_MASK allows us to
find just those bits that are within the current page, that is the
offset of an address within its page.

XXX continue short discussion

Computer Science from the Bottom Up

192

3.4 Optimisation
Once the compiler has an internal representation of the code, the
really interesting part of the compiler starts. The compiler wants to
find the most optimised assembly language output for the given input
code. This is a large and varied problem and requires knowledge of
everything from efficient algorithms based in computer science to
deep knowledge about the particular processor the code is to be run
on.

There are some common optimisations the compiler can look at when
generating output. There are many, many more strategies for
generating the best code, and it is always an active research area.

3.4.1 General Optimising
The compiler can often see that a particular piece of code can not be
used and so leave it out optimise a particular language construct into
something smaller with the same outcome.

3.4.2 Unrolling loops
If code contains a loop, such as a for or while loop and the compiler
has some idea how many times it will execute, it may be more
efficient to unroll the loop so that it executes sequentially. This means
that instead of doing the inside of the loop and then branching back
to the start to do repeat the process, the inner loop code is duplicated
to be executed again.

Whilst this increases the size of the code, it may allow the processor
to work through the instructions more efficiently as branches can
cause inefficiencies in the pipeline of instructions coming into the
processor.

3.4.3 Inlining functions
Similar to unrolling loops, it is possible to put embed called functions
within the callee. The programmer can specify that the compiler
should try to do this by specifying the function as inline in the
function definition. Once again, you may trade code size for
sequentially in the code by doing this.

3.4.4 Branch Prediction
Any time the computer comes across an if statement there are two

Computer Science from the Bottom Up

193

possible outcomes; true or false. The processor wants to keep its
incoming pipes as full as possible, so it can not wait for the outcome
of the test before putting code into the pipeline.

Thus the compiler can make a prediction about what way the test is
likely to go. There are some simple rules the compiler can use to
guess things like this, for example if (val == -1) is probably not
likely to be true, since -1 usually indicates an error code and
hopefully that will not be triggered too often.

Some compilers can actually compile the program, have the user run
it and take note of which way the branches go under real conditions.
It can then re-compile it based on what it has seen.

4 Assembler
The assembly code outputted by the compiler is still in a human
readable form, should you know the specifics of the assembly code for
the processor. Developers will often take a peek at the assembly
output to manually check that the code is the most optimised or to
discover any bugs in the compiler (this is more common than one
might think, especially when the compiler is being very aggressive
with optimisations).

The assembler is a more mechanical process of converting the
assembly code into a binary form. Essentially, the assembler keeps a
large table of each possible instruction and its binary counterpart
(called an op code for operation code). It combines these opcodes
with the registers specified in the assembly to produce a binary
output file.

This code is called object code and, at this stage, is not executable.
Object code is simply a binary representation of specific input source
code file. Good programming practice dictates that a programmer
should not "put all the eggs in one basket" by placing all your source
code in one file.

5 Linker
Often in a large program, you will separate out code into multiple
files to keep related functions together. Each of these files can be
compiled into object code: but your final goal is to create a single
executable! There needs to be some way combining each of these
object files into a single executable. We call this linking.

Computer Science from the Bottom Up

194

Note that even if your program does fit in one file it still needs to be
linked against certain system libraries to operate correctly. For
example, the printf call is kept in a library which must be combined
with your executable to work. So although you do not explicitly have
to worry about linking in this case, there is most certainly still a
linking process happening to create your executable.

In the following sections we explain some terms essential to
understanding linking.

5.1 Symbols
5.1.1 Symbols
Variables and functions all have names in source code which we refer
to them by. One way of thinking of a statement declaring a variable
int a is that you are telling the compiler "set aside some memory of
sizeof(int) and from now on when I use a it will refer to this

allocated memory. Similarly a function says "store this code in
memory, and when I call function() jump to and execute this code".

In this case, we call a and function symbols since they are a
symbolic representation of an area of memory.

Symbols help humans to understand programming. You could say that
the primary job of the compilation process is to remove symbols -- the
processor doesn't know what a represents, all it knows is that it has
some data at a particular memory address. The compilation process
needs to convert a += 2 to something like "increment the value in
memory at 0xABCDE by 2.

5.1.2 Symbol Visibility
In some C programs, you may have seen the terms static and
extern used with variables. These modifiers can effect what we call

the visibility of symbols.

Imagine you have split up your program in two files, but some
functions need to share a variable. You only want one definition (i.e.
memory location) of the shared variable (otherwise it wouldn't be
shared!), but both files need to reference it.

To enable this, we declare the variable in one file, and then in the
other file declare a variable of the same name but with the prefix
extern . extern stands for external and to a human means that this

variable is declared somewhere else.

Computer Science from the Bottom Up

195

What extern says to a compiler is that it should not allocate any
space in memory for this variable, and leave this symbol in the object
code where it will be fixed up later. The compiler can not possibly
know where the symbol is actually defined but the linkerdoes, since it
is its job to look at all object files together and combine them into a
single executable. So the linker will see the symbol left over in the
second file, and say "I've seen that symbol before in file 1, and I know
that it refers to memory location 0x12345 ". Thus it can modify the
symbol value to be the memory value of the variable in the first file.

static is almost the opposite of extern . It places restrictions on the
visibility of the symbol it modifies. If you declare a variable with
static that says to the compiler "don't leave any symbols for this in

the object code". This means that when the linker is linking together
object files it will never see that symbol (and so can't make that "I've
seen this before!" connection). static is good for separation and
reducing conflicts -- by declaring a variable static you can reuse the
variable name in other files and not end up with symbol clashes. We
say we are restricting the visibility of the symbol, because we are not
allowing the linker to see it. Contrast this with a more visible symbol
(one not declared with static) which can be seen by the linker.

5.2 The linking process
Thus the linking process is really two steps; combining all object files
into one executable file and then going through each object file to
resolve any symbols. This usually requires two passes; one to read all
the symbol definitions and take note of unresolved symbols and a
second to fix up all those unresolved symbols to the right place.

The final executable should end up with no unresolved symbols; the
linker will fail with an error if there are any.1

6 A practical example
We can walk through the steps taken to build a simple application
step by step.

Note that when you type gcc that actually runs a driver program that
hides most of the steps from you. Under normal circumstances this is
exactly what you want, because the exact commands and options to
get a real life working executable on a real system can be quite
complicated and architecture specific.

1. We call this static linking. Dynamic linking is a similar concept done at
executable runtime, and is described a little later on.

Computer Science from the Bottom Up

196

We will show the compilation process with the two following
examples. Both are C source files, one defined the main() function for
the initial program entry point, and another declares a helper type
function. There is one global variable too, just for illustration.

Computer Science from the Bottom Up

197

1 #include <stdio.h>

/* We need a prototype so the compiler knows what types function() takes */
int function(char *input);

5
/* Since this is static, we can define it in both hello.c and function.c */
static int i = 100;

/* This is a global variable */
10 int global = 10;

int main(void)
{

/* function() should return the value of global */
15 int ret = function("Hello, World!");

exit(ret);
}

Example 6.1 Hello World

Computer Science from the Bottom Up

198

1 #include <stdio.h>

static int i = 100;

5 /* Declard as extern since defined in hello.c */
extern int global;

int function(char *input)
{

10 printf("%s\n", input);
return global;

}

Example 6.2 Function Example

6.1 Compiling
All compilers have an option to only execute the first step of
compilation. Usually this is something like -S and the output will
generally be put into a file with the same name as the input file but
with a .s extension.

Thus we can show the first step with gcc -S as illustrated in the
example below.

Computer Science from the Bottom Up

199

1 $ gcc -S hello.c
$ gcc -S function.c
$ cat function.s

.file "function.c"
5 .pred.safe_across_calls p1-p5,p16-p63

.section .sdata,"aw",@progbits

.align 4

.type i#, @object

.size i#, 4
10 i:

data4 100
.section .rodata
.align 8

.LC0:
15 stringz "%s\n"

.text

.align 16

.global function#

.proc function#
20 function:

.prologue 14, 33

.save ar.pfs, r34
alloc r34 = ar.pfs, 1, 4, 2, 0
.vframe r35

25 mov r35 = r12
adds r12 = -16, r12
mov r36 = r1
.save rp, r33
mov r33 = b0

30 .body

Computer Science from the Bottom Up

200

;;
st8 [r35] = r32
addl r14 = @ltoffx(.LC0), r1
;;

35 ld8.mov r37 = [r14], .LC0
ld8 r38 = [r35]
br.call.sptk.many b0 = printf#
mov r1 = r36
;;

40 addl r15 = @ltoffx(global#), r1
;;
ld8.mov r14 = [r15], global#
;;
ld4 r14 = [r14]

45 ;;
mov r8 = r14
mov ar.pfs = r34
mov b0 = r33
.restore sp

50 mov r12 = r35
br.ret.sptk.many b0
;;
.endp function#
.ident "GCC: (GNU) 3.3.5 (Debian 1:3.3.5-11)"

Example 6.1.1 Compilation Example

The assembly is a little to complex to fully describe, but you should be
able to see where i is defined as a data4 (i.e. 4 bytes or 32 bits, the
size of an int), where function is defined (function:) and a call to
printf() .

We now have two assembly files ready to be assembled into machine
code!

Computer Science from the Bottom Up

201

6.2 Assembly
Assembly is a fairly straight forward process. The assembler is
usually called as and takes arguments in a similar fashion to gcc

$ as -o function.o function.s
$ as -o hello.o hello.s
$ ls
function.c function.o function.s hello.c hello.o hello.s

Example 6.2.1 Assembly Example

After assembling we have object code, which is ready to be linked
together into the final executable. You can usually skip having to use
the assembler by hand by calling the compiler with -c , which will
directly convert the input file to object code, putting it in a file with
the same prefix but .o as an extension.

We can't inspect the object code directly, as it is in a binary format (in
future weeks we will learn about this binary format). However we can
use some tools to inspect the object files, for example readelf --
symbols will show us symbols in the object file.

Computer Science from the Bottom Up

202

1 $ readelf --symbols ./hello.o

Symbol table '.symtab' contains 15 entries:
Num: Value Size Type Bind Vis Ndx Name

5 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS hello.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 3
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4

10 5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 4 OBJECT LOCAL DEFAULT 5 i
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 7
9: 0000000000000000 0 SECTION LOCAL DEFAULT 8

15 10: 0000000000000000 0 SECTION LOCAL DEFAULT 10
11: 0000000000000004 4 OBJECT GLOBAL DEFAULT 5 global
12: 0000000000000000 96 FUNC GLOBAL DEFAULT 1 main
13: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND function
14: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND exit

20
$ readelf --symbols ./function.o

Symbol table '.symtab' contains 14 entries:
Num: Value Size Type Bind Vis Ndx Name

25 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS function.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 3
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4

30 5: 0000000000000000 0 SECTION LOCAL DEFAULT 5

Computer Science from the Bottom Up

203

6: 0000000000000000 4 OBJECT LOCAL DEFAULT 5 i
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 7
9: 0000000000000000 0 SECTION LOCAL DEFAULT 8

35 10: 0000000000000000 0 SECTION LOCAL DEFAULT 10
11: 0000000000000000 128 FUNC GLOBAL DEFAULT 1 function
12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND printf
13: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND global

Example 6.2.2 Readelf Example

Although the output is quite complicated (again!) you should be able
to understand much of it. For example

• In the output of hello.o have a look at the symbol with name
i . Notice how it says it is LOCAL ? That is because we declared

it static and as such it has been flagged as being local to this
object file.

• In the same output, notice that the global variable is defined
as a GLOBAL , meaning that it is visible outside this file.
Similarly the main() function is externally visible.

• Notice that the function symbol (for the call to function() is
left has UND or undefined. This means that it has been left for
the linker to find the address of the function.

• Have a look at the symbols in the function.c file and how they
fit into the output.

6.3 Linking
Actually invoking the linker, called ld , is a very complicated process
on a real system (are you sick of hearing this yet?). This is why we
leave the linking process up to gcc .

But of course we can spy on what gcc is doing under the hood with
the -v (verbose) flag.

Computer Science from the Bottom Up

204

1 /usr/lib/gcc-lib/ia64-linux/3.3.5/collect2 -static
/usr/lib/gcc-lib/ia64-linux/3.3.5/../../../crt1.o
/usr/lib/gcc-lib/ia64-linux/3.3.5/../../../crti.o
/usr/lib/gcc-lib/ia64-linux/3.3.5/crtbegin.o

5 -L/usr/lib/gcc-lib/ia64-linux/3.3.5
-L/usr/lib/gcc-lib/ia64-linux/3.3.5/../../..
hello.o
function.o
--start-group

10 -lgcc
-lgcc_eh
-lunwind
-lc
--end-group

15 /usr/lib/gcc-lib/ia64-linux/3.3.5/crtend.o
/usr/lib/gcc-lib/ia64-linux/3.3.5/../../../crtn.o

Example 6.3.1 Linking Example

The first thing you notice is that a program called collect2 is being
called. This is a simple wrapper around ld that is used internally by
gcc.

The next thing you notice is object files starting with crt being
specified to the linker. These functions are provided by gcc and the
system libraries and contain code required to start the program. In
actuality, the main() function is not the first one called when a
program runs, but a function called _start which is in the crt object
files. This function does some generic setup which application
programmers do not need to worry about.

The path hierarchy is quite complicated, but in essence we can see
that the final step is to link in some extra object files, namely

• crt1.o : provided by the system libraries (libc) this object file
contains the _start function which is actually the first thing
called within the program.

crti.o : provided by the system libraries

Computer Science from the Bottom Up

205

crtbegin.o

crtsaveres.o

crtend.o

crtn.o

We discuss how these are used to start the program a little later.

Next you can see that we link in our two object files, hello.o and
function.o . After that we specify some extra libraries with -l flags.

These libraries are system specific and required for every program.
The major one is -lc which brings in the C library, which has all
common functions like printf() .

After that we again link in some more system object files which do
some cleanup after programs exit.

Although the details are complicated, the concept is straight forward.
All the object files will be linked together into a single executable file,
ready to run!

6.4 The Executable
We will go into more details about the executable in the short future,
but we can do some inspection in a similar fashion to the object files
to see what has happened.

Computer Science from the Bottom Up

206

1 ianw@lime:~/programs/csbu/wk7/code$ gcc -o program hello.c function.c
ianw@lime:~/programs/csbu/wk7/code$ readelf --symbols ./program

Symbol table '.dynsym' contains 11 entries:
5 Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 6000000000000de0 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC
2: 0000000000000000 176 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.2 (2)
3: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS __bss_start

10 4: 0000000000000000 704 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.2 (2)
5: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS _edata
6: 6000000000000fe8 0 OBJECT GLOBAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_ 7: 60000000000010b0 0 NOTYPE GLOBAL DEFAULT ABS _end
8: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
9: 0000000000000000 544 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2 (2)

15 10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Symbol table '.symtab' contains 127 entries:
Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
20 1: 40000000000001c8 0 SECTION LOCAL DEFAULT 1

2: 40000000000001e0 0 SECTION LOCAL DEFAULT 2
3: 4000000000000200 0 SECTION LOCAL DEFAULT 3
4: 4000000000000240 0 SECTION LOCAL DEFAULT 4
5: 4000000000000348 0 SECTION LOCAL DEFAULT 5

25 6: 40000000000003d8 0 SECTION LOCAL DEFAULT 6
7: 40000000000003f0 0 SECTION LOCAL DEFAULT 7
8: 4000000000000410 0 SECTION LOCAL DEFAULT 8
9: 4000000000000440 0 SECTION LOCAL DEFAULT 9

10: 40000000000004a0 0 SECTION LOCAL DEFAULT 10
30 11: 40000000000004e0 0 SECTION LOCAL DEFAULT 11

Computer Science from the Bottom Up

207

12: 40000000000005e0 0 SECTION LOCAL DEFAULT 12
13: 4000000000000b00 0 SECTION LOCAL DEFAULT 13
14: 4000000000000b40 0 SECTION LOCAL DEFAULT 14
15: 4000000000000b60 0 SECTION LOCAL DEFAULT 15

35 16: 4000000000000bd0 0 SECTION LOCAL DEFAULT 16
17: 4000000000000ce0 0 SECTION LOCAL DEFAULT 17
18: 6000000000000db8 0 SECTION LOCAL DEFAULT 18
19: 6000000000000dd0 0 SECTION LOCAL DEFAULT 19
20: 6000000000000dd8 0 SECTION LOCAL DEFAULT 20

40 21: 6000000000000de0 0 SECTION LOCAL DEFAULT 21
22: 6000000000000fc0 0 SECTION LOCAL DEFAULT 22
23: 6000000000000fd0 0 SECTION LOCAL DEFAULT 23
24: 6000000000000fe0 0 SECTION LOCAL DEFAULT 24
25: 6000000000000fe8 0 SECTION LOCAL DEFAULT 25

45 26: 6000000000001040 0 SECTION LOCAL DEFAULT 26
27: 6000000000001080 0 SECTION LOCAL DEFAULT 27
28: 60000000000010a0 0 SECTION LOCAL DEFAULT 28
29: 60000000000010a8 0 SECTION LOCAL DEFAULT 29
30: 0000000000000000 0 SECTION LOCAL DEFAULT 30

50 31: 0000000000000000 0 SECTION LOCAL DEFAULT 31
32: 0000000000000000 0 SECTION LOCAL DEFAULT 32
33: 0000000000000000 0 SECTION LOCAL DEFAULT 33
34: 0000000000000000 0 SECTION LOCAL DEFAULT 34
35: 0000000000000000 0 SECTION LOCAL DEFAULT 35

55 36: 0000000000000000 0 SECTION LOCAL DEFAULT 36
37: 0000000000000000 0 SECTION LOCAL DEFAULT 37
38: 0000000000000000 0 SECTION LOCAL DEFAULT 38
39: 0000000000000000 0 SECTION LOCAL DEFAULT 39
40: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

60 41: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

Computer Science from the Bottom Up

208

42: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
43: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
44: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
45: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

65 46: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
47: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
48: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
49: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>
50: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S

70 51: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
52: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S
53: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
54: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S
55: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

75 56: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
57: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
58: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>
59: 0000000000000000 0 FILE LOCAL DEFAULT ABS abi-note.S
60: 0000000000000000 0 FILE LOCAL DEFAULT ABS init.c

80 61: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
62: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
63: 0000000000000000 0 FILE LOCAL DEFAULT ABS initfini.c
64: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
65: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

85 66: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
67: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
68: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>
69: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
70: 4000000000000670 128 FUNC LOCAL DEFAULT 12 gmon_initializer

90 71: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

Computer Science from the Bottom Up

209

72: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
73: 0000000000000000 0 FILE LOCAL DEFAULT ABS initfini.c
74: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
75: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>

95 76: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
77: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
78: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>
79: 0000000000000000 0 FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
80: 0000000000000000 0 FILE LOCAL DEFAULT ABS auto-host.h

100 81: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
82: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>
83: 6000000000000fc0 0 NOTYPE LOCAL DEFAULT 22 __CTOR_LIST__
84: 6000000000000fd0 0 NOTYPE LOCAL DEFAULT 23 __DTOR_LIST__
85: 6000000000000fe0 0 NOTYPE LOCAL DEFAULT 24 __JCR_LIST__

105 86: 6000000000001088 8 OBJECT LOCAL DEFAULT 27 dtor_ptr
87: 40000000000006f0 128 FUNC LOCAL DEFAULT 12 __do_global_dtors_aux
88: 4000000000000770 128 FUNC LOCAL DEFAULT 12 __do_jv_register_classes
89: 0000000000000000 0 FILE LOCAL DEFAULT ABS hello.c
90: 6000000000001090 4 OBJECT LOCAL DEFAULT 27 i

110 91: 0000000000000000 0 FILE LOCAL DEFAULT ABS function.c
92: 6000000000001098 4 OBJECT LOCAL DEFAULT 27 i
93: 0000000000000000 0 FILE LOCAL DEFAULT ABS auto-host.h
94: 0000000000000000 0 FILE LOCAL DEFAULT ABS <command line>
95: 0000000000000000 0 FILE LOCAL DEFAULT ABS <built-in>

115 96: 6000000000000fc8 0 NOTYPE LOCAL DEFAULT 22 __CTOR_END__
97: 6000000000000fd8 0 NOTYPE LOCAL DEFAULT 23 __DTOR_END__
98: 6000000000000fe0 0 NOTYPE LOCAL DEFAULT 24 __JCR_END__
99: 6000000000000de0 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC

100: 4000000000000a70 144 FUNC GLOBAL HIDDEN 12 __do_global_ctors_aux
120 101: 6000000000000dd8 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_end

Computer Science from the Bottom Up

210

102: 60000000000010a8 8 OBJECT GLOBAL HIDDEN 29 __dso_handle
103: 40000000000009a0 208 FUNC GLOBAL DEFAULT 12 __libc_csu_fini
104: 0000000000000000 176 FUNC GLOBAL DEFAULT UND printf@@GLIBC_2.2
105: 40000000000004a0 32 FUNC GLOBAL DEFAULT 10 _init

125 106: 4000000000000850 128 FUNC GLOBAL DEFAULT 12 function
107: 40000000000005e0 144 FUNC GLOBAL DEFAULT 12 _start
108: 6000000000001094 4 OBJECT GLOBAL DEFAULT 27 global
109: 6000000000000dd0 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_start
110: 40000000000008d0 208 FUNC GLOBAL DEFAULT 12 __libc_csu_init

130 111: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS __bss_start
112: 40000000000007f0 96 FUNC GLOBAL DEFAULT 12 main
113: 6000000000000dd0 0 NOTYPE GLOBAL DEFAULT ABS __init_array_end
114: 6000000000000dd8 0 NOTYPE WEAK DEFAULT 20 data_start
115: 4000000000000b00 32 FUNC GLOBAL DEFAULT 13 _fini

135 116: 0000000000000000 704 FUNC GLOBAL DEFAULT UND exit@@GLIBC_2.2
117: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS _edata
118: 6000000000000fe8 0 OBJECT GLOBAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_
119: 60000000000010b0 0 NOTYPE GLOBAL DEFAULT ABS _end
120: 6000000000000db8 0 NOTYPE GLOBAL DEFAULT ABS __init_array_start

140 121: 6000000000001080 4 OBJECT GLOBAL DEFAULT 27 _IO_stdin_used
122: 60000000000010a0 8 OBJECT GLOBAL DEFAULT 28 __libc_ia64_register_back
123: 6000000000000dd8 0 NOTYPE GLOBAL DEFAULT 20 __data_start
124: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
125: 0000000000000000 544 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_

145 126: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Example 6.4.1 Executable Example

Some things to note

• Note I built the executable the "easy" way!

• See there are two symbol tables; the dynsym and symtab ones.
We explain how the dynsym symbols work soon, but notice that

Computer Science from the Bottom Up

211

some of them are versioned with an @ symbol.

• Note the many symbols that have been included from the extra
object files. Many of them start with __ to avoid clashing with
any names the programmer might choose. Read through and
pick out the symbols we mentioned before from the object files
and see if they have changed in any way.

Chapter 8. Behind the process
1 Review of executable files
We know that a program running in memory has two major
components in code (also commonly known as a text for historical
reasons) and data. We also know, however, an executable does not
live its life in memory, but spends most of its life as a file on a disk
waiting to be loaded an run. Since a file is, in essence, simply a
contiguous array of bits, all systems come up with methods of
organising code and data within files for on-demand execution. This
file-format is generally referred to as a binary or an executable. The
bits and bytes of the file are generally in a format ready to be placed
in memory and interpreted directly by processor hardware.

2 Representing executable files
2.1 Three Standard Sections
At a minimum, any executable file format will need to specify where
the code and data are in the binary file. These are the two primary
sections within an executable file.

One additional component we have not mentioned until now is
storage space of uninitialised global variables. If we declare a
variable and give it an initial value, this value needs to be stored in
the executable file so that at program start it can be initalised to the
correct value. However many variables are uninitialised (or zero)
when the program is first executed. Making space for these in the
executable and then simply storing zero or NULL values is a waste of
space, needlessly bloating the executable file-size on disk. Thus most
binary formats define the concept of a additional BSS section as a
place-holder size for zeroed, uninitialised data. On program load the
extra memory described by the BSS can be allocated (and set to
zero!). BSS probably stands for Block Started by Symbol, an assembly

Computer Science from the Bottom Up

212

command for a old IBM computer; the exact derivation is probably
lost to history.

2.2 Binary Format
The executable is created by the toolchain from the source code. This
file needs to be in a format explicitly defined such that the compiler
can create it and the operating system can identify it and load into
memory, turning it into a running process that the operating system
can manage. This executable file format can be specific to the
operating system, as we would not normally expect that a program
compiled for one system will execute on another (for example, you
don't expect your Windows programs to run on Linux, or your Linux
programs to run on OS X).

However, the common thread between all executable file formats is
that they include a predefined, standardised header which describes
how program code and data are stored in the rest of the file. In
words, it would generally describe "the program code starts 20 bytes
into this file, and is 50 kilobytes long. The program data follows it and
is 20 kilobytes long".

In recent times one particular format has become the de facto
standard for executable representation for modern UNIX type
systems. It is called the Executable and Linker Format , or ELF for
short; we'll be looking at it in more detail soon.

2.3 Binary Format History
2.3.1 a.out
ELF was not always the standard; original UNIX systems used a file
format called a.out . We can see the vestiges of this if you compile a
program without the -o option to specify an output file name; the
executable will be created with a default name of a.out 1.

a.out is a very simple header format that only allows a single data,
code and BSS section. As you will come to see, this is insufficient for
modern systems with dynamic libraries.

1. In fact, a.out is the default output filename from the linker. The
compiler generally uses randomly generated file names as intermediate
files for assembly and object code.

Computer Science from the Bottom Up

213

2.3.2 COFF
The Common Object File Format, or COFF, was the precursor to ELF.
Its header format was more flexible, allowing more (but limited)
sections in the file.

COFF also has difficulties with elegant support of shared libraries,
and ELF was selected as an alternative implementation on Linux.

However, COFF lives on in Microsoft Windows as the Portable
Executable or PE format. PE is to Windows as ELF is to Linux.

3 ELF
ELF is an extremely flexible format for representing binary code in a
system. By following the ELF standard you can represent a kernel
binary just as easily as a normal executable or a system library. The
same tools can be used to inspect and operate on all ELF files and
developers who understand the ELF file format can translate their
skills to most modern UNIX systems.

ELF extends on COFF and gives the header sufficient flexibility to
define an arbitrary number of sections, each with its own properties.
This facilitates easier dynamic linking and debugging.

Computer Science from the Bottom Up

214

Header

Data

Header

Data

Header

Data

Header

Data

Header

Figure 3.1 ELF Overview

3.1 ELF File Header
Overall, the file has a file header which describes the file in general
and then has pointers to each of the individual sections that make up
the file. Example 3.1.1, The ELF Header shows the description as
given in the API documentation for ELF32 (the 32-bit form of ELF).
This is the layout of the C structure which defines a ELF header.

Computer Science from the Bottom Up

215

1 typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;

5 Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;

10 Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;

15 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

Example 3.1.1 The ELF Header

Computer Science from the Bottom Up

216

1 $ readelf --header /bin/ls

ELF Header:
Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00

5 Class: ELF32
Data: 2's complement, big endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0

10 Type: EXEC (Executable file)
Machine: PowerPC
Version: 0x1
Entry point address: 0x10002640
Start of program headers: 52 (bytes into file)

15 Start of section headers: 87460 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 8

20 Size of section headers: 40 (bytes)
Number of section headers: 29
Section header string table index: 28

[...]

Example 3.1.2 The ELF Header, as shown by readelf

Example 3.1.2, The ELF Header, as shown by readelf shows a human
readable form as present by the readelf program, which is part of
GNU binutils.

The e_ident array is the first thing at the start of any ELF file, and
always starts with a few "magic" bytes. The first byte is 0x7F and
then the next three bytes are "ELF". You can inspect an ELF binary to

Computer Science from the Bottom Up

217

see this for yourself with something like the hexdump command.

ianw@mingus:~$ hexdump -C /bin/ls | more
00000000 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00 |.ELF............|

... (rest of the program follows) ...

Example 3.1.3 Inspecting the ELF magic number

Note the 0x7F to start, then the ASCII encoded "ELF" string. Have a
look at the standard and see what the rest of the array defines and
what the values are in a binary.

Next we have some flags for the type of machine this binary is
created for. The first thing we can see is that ELF defines different
type sized versions, one for 32 bit and one for 64 bit versions; here
we inspect the 32 bit version. The difference is mostly that on 64 bit
machines addresses obviously required to be held in 64 bit variables.
We can see that the binary has been created for a big endian machine
that uses 2's complement to represent negative numbers. Skipping
down a bit we can see the Machine tells us this is a PowerPC binary.

The apparently innocuous entry point address seems straight forward
enough; this is the address in memory that the program code starts
at. Beginning C programmers are told that main() is the first program
called in your program. Using the entry point address we can actually
verify that it isn't.

Computer Science from the Bottom Up

218

1 $ cat test.c
#include <stdio.h>

int main(void)
5 {

printf("main is : %p\n", &main);
return 0;

}

10 $ gcc -Wall -o test test.c

$./test
main is : 0x10000430

15 $ readelf --headers ./test | grep 'Entry point'
Entry point address: 0x100002b0

$ objdump --disassemble ./test | grep 100002b0
100002b0 <_start>:

20 100002b0: 7c 29 0b 78 mr r9,r1

Example 3.1.4 Investigating the entry point

In Example 3.1.4, Investigating the entry point we can see that the
entry point is actually a function called _start . Our program didn't
define this at all, and the leading underscore suggests that it is in a
separate namespace. We examine how a program starts up in detail in
Section 8.2, Starting the program.

After that the header contains pointers to where in the file other
important parts of the ELF file start, like a table of contents.

3.2 Symbols and Relocations
The ELF specification provides for symbol tables which are simply

Computer Science from the Bottom Up

219

mappings of strings (symbols) to locations in the file. Symbols are
required for linking; for example assigning a value to a variable foo
declared as extern int foo; would require the linker to find the
address of foo , which would involve looking up "foo" in the symbol
table and finding the address.

Closely related to symbols are relocations. A relocation is simply a
blank space left to be patched up later. In the previous example, until
the address of foo is known it can not be used. However, on a 32-bit
system, we know the address of foo must be a 4-byte value, so any
time the compiler needs to use that address (to say, assign a value) it
can simply leave 4-bytes of blank space and keep a relocation that
essentially says to the linker "place the real value of "foo" into the 4
bytes at this address". As mentioned, this requires the symbol "foo" to
be resolved. Section 2.1, Relocations contains further information on
relocations.

3.3 Sections and Segments
The ELF format specifies two "views" of an ELF file — that which is
used for linking and that which is used for execution. This affords
significant flexibility for systems designers.

We talk about sections in object code waiting to be linked into an
executable. One or more sections map to a segment in the executable.

3.3.1 Segments
As we have done before, it is sometimes easier to look at the higher
level of abstraction (segments) before inspecting the lower layers.

As we mentioned the ELF file has an header that describes the overall
layout of the file. The ELF header actually points to another group of
headers called the program headers. These headers describe to the
operating system anything that might be required for it to load the
binary into memory and execute it. Segments are described by
program headers, but so are some other things required to get the
executable running.

Computer Science from the Bottom Up

220

1 typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;

5 Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

10 }

Example 3.3.1.1 The Program Header

The definition of the program header is seen in Example 3.3.1.1, The
Program Header. You might have noticed from the ELF header
definition above how there were fields e_phoff , e_phnum and
e_phentsize ; these are simply the offset in the file where the program

headers start, how many program headers there are and how big
each program header is. With these three bits of information you can
easily find and read the program headers.

Program headers more than just segments. The p_type field defines
just what the program header is defining. For example, if this field is
PT_INTERP the header is defined as meaning a string pointer to an

interpreter for the binary file. We discussed compiled versus
interpreted languages previously and made the distinction that a
compiler builds a binary which can be run in a stand alone fashion.
Why should it need an interpreter? As always, the true picture is a
little more complicated. There are several reasons why a modern
system wants flexibility when loading executable files, and to do this
some information can only be adequately acquired at the actual time
the program is set up to run. We see this in future chapters where we
look into dynamic linking. Consequently some minor changes might
need to be made to the binary to allow it to work properly at runtime.
Thus the usual interpreter of a binary file is the dynamic loader, so
called because it takes the final steps to complete loading of the
executable and prepare the binary image for running.

Segments are described with a value of PT_LOAD in the p_type field.
Each segment is then described by the other fields in the program
header. The p_offset field tells you how far into the file on disk the
data for the segment is. The p_vaddr field tells you what address that

Computer Science from the Bottom Up

221

data is to live at in virtual memory (p_addr describes the physical
address, which is only really useful for small embedded systems that
do not implement virtual memory). The two flags p_filesz and
p_memsz work to tell you how big the segment is on disk and how big

it should be in memory. If the memory size is greater than the disk
size, then the overlap should be filled with zeros. In this way you can
save considerable space in your binaries by not having to waste space
for empty global variables. Finally p_flags indicates the permissions
on the segment. Execute, read and write permissions can be specified
in any combination; for example code segments should be marked as
read and execute only, data sections as read and write with no
execute.

There are a few other segment types defined in the program headers,
they are described more fully in the standards specification.

3.3.2 Sections
As we have mentioned, sections make up segments. Sections are a
way to organise the binary into logical areas to communicate
information between the compiler and the linker. In some special
binaries, such as the Linux kernel, sections are used in more specific
ways (see Section 6.2, Custom sections).

We've seen how segments ultimately come down to a blob of data in a
file on disk with some descriptions about where it should be loaded
and what permissions it has. Sections have a similar header to
segments, as shown in Example 3.3.2.1, Sections .

Computer Science from the Bottom Up

222

1 typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;

5 Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;

10 Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

}

Example 3.3.2.1 Sections

Sections have a few more types defined for the sh_type field; for
example a section of type SH_PROGBITS is defined as a section that
hold binary data for use by the program. Other flags say if this section
is a symbol table (used by the linker or debugger for example) or
maybe something for the dynamic loader. There are also more
attributes, such as the allocate attribute which flags that this section
will need memory allocated for it.

Below we will examine the program listed in Example 3.3.2.2,
Sections .

Computer Science from the Bottom Up

223

1 #include <stdio.h>

int big_big_array[10*1024*1024];

5 char *a_string = "Hello, World!";

int a_var_with_value = 0x100;

int main(void)
10 {

big_big_array[0] = 100;
printf("%s\n", a_string);
a_var_with_value += 20;

}

Example 3.3.2.2 Sections

Example 3.3.2.3, Sections readelf output shows the output of readelf
with some parts stripped clarity. Using this output we can analyse
each part of our simple program and see where it ends up in the final
output binary.

Computer Science from the Bottom Up

224

1 $ readelf --all ./sections
ELF Header:
...
Size of section headers: 40 (bytes)

5 Number of section headers: 37
Section header string table index: 34

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

10 [0] NULL 00000000 000000 000000 00 0 0 0
[1] .interp PROGBITS 10000114 000114 00000d 00 A 0 0 1
[2] .note.ABI-tag NOTE 10000124 000124 000020 00 A 0 0 4
[3] .hash HASH 10000144 000144 00002c 04 A 4 0 4
[4] .dynsym DYNSYM 10000170 000170 000060 10 A 5 1 4

15 [5] .dynstr STRTAB 100001d0 0001d0 00005e 00 A 0 0 1
[6] .gnu.version VERSYM 1000022e 00022e 00000c 02 A 4 0 2
[7] .gnu.version_r VERNEED 1000023c 00023c 000020 00 A 5 1 4
[8] .rela.dyn RELA 1000025c 00025c 00000c 0c A 4 0 4
[9] .rela.plt RELA 10000268 000268 000018 0c A 4 25 4

20 [10] .init PROGBITS 10000280 000280 000028 00 AX 0 0 4
[11] .text PROGBITS 100002b0 0002b0 000560 00 AX 0 0 16
[12] .fini PROGBITS 10000810 000810 000020 00 AX 0 0 4
[13] .rodata PROGBITS 10000830 000830 000024 00 A 0 0 4
[14] .sdata2 PROGBITS 10000854 000854 000000 00 A 0 0 4

25 [15] .eh_frame PROGBITS 10000854 000854 000004 00 A 0 0 4
[16] .ctors PROGBITS 10010858 000858 000008 00 WA 0 0 4
[17] .dtors PROGBITS 10010860 000860 000008 00 WA 0 0 4
[18] .jcr PROGBITS 10010868 000868 000004 00 WA 0 0 4
[19] .got2 PROGBITS 1001086c 00086c 000010 00 WA 0 0 1

30 [20] .dynamic DYNAMIC 1001087c 00087c 0000c8 08 WA 5 0 4

Computer Science from the Bottom Up

225

[21] .data PROGBITS 10010944 000944 000008 00 WA 0 0 4
[22] .got PROGBITS 1001094c 00094c 000014 04 WAX 0 0 4
[23] .sdata PROGBITS 10010960 000960 000008 00 WA 0 0 4
[24] .sbss NOBITS 10010968 000968 000000 00 WA 0 0 1

35 [25] .plt NOBITS 10010968 000968 000060 00 WAX 0 0 4
[26] .bss NOBITS 100109c8 000968 2800004 00 WA 0 0 4
[27] .comment PROGBITS 00000000 000968 00018f 00 0 0 1
[28] .debug_aranges PROGBITS 00000000 000af8 000078 00 0 0 8
[29] .debug_pubnames PROGBITS 00000000 000b70 000025 00 0 0 1

40 [30] .debug_info PROGBITS 00000000 000b95 0002e5 00 0 0 1
[31] .debug_abbrev PROGBITS 00000000 000e7a 000076 00 0 0 1
[32] .debug_line PROGBITS 00000000 000ef0 0001de 00 0 0 1
[33] .debug_str PROGBITS 00000000 0010ce 0000f0 01 MS 0 0 1
[34] .shstrtab STRTAB 00000000 0011be 00013b 00 0 0 1

45 [35] .symtab SYMTAB 00000000 0018c4 000c90 10 36 65 4
[36] .strtab STRTAB 00000000 002554 000909 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)

50 O (extra OS processing required) o (OS specific), p (processor specific)

There are no section groups in this file.
...

55 Symbol table '.symtab' contains 201 entries:
Num: Value Size Type Bind Vis Ndx Name

...
99: 100109cc 0x2800000 OBJECT GLOBAL DEFAULT 26 big_big_array

...
60 110: 10010960 4 OBJECT GLOBAL DEFAULT 23 a_string

Computer Science from the Bottom Up

226

...
130: 10010964 4 OBJECT GLOBAL DEFAULT 23 a_var_with_value

...
144: 10000430 96 FUNC GLOBAL DEFAULT 11 main

Example 3.3.2.3 Sections readelf output

Firstly, let us look at the variable big_big_array , which as the name
suggests is a fairly large global array. If we skip down to the symbol
table we can see that the variable is at location 0x100109cc which we
can correlate to the .bss section in the section listing, since it starts
just below it at 0x100109c8 . Note the size, and how it is quite large.
We mentioned that BSS is a standard part of a binary image since it
would be silly to require that binary on disk have 10 megabytes of
space allocated to it, when all of that space is going to be zero. Note
that this section has a type of NOBITS meaning that it does not have
any bytes on disk.

Thus the .bss section is defined for global variables whose value
should be zero when the program starts. We have seen how the
memory size can be different to the on disk size in our discussion of
segments; variables being in the .bss section are an indication that
they will be given zero value on program start.

The a_string variable lives in the .sdata section, which stands for
small data. Small data (and the corresponding .sbss section) are
sections available on some architectures where data can be reached
by an offset from some known pointer. This means a fixed-value can
be added to the base-address, making it faster to get to data in the
sections as there are no extra lookups and loading of addresses into
memory required. Most architectures are limited to the size of
immediate values you can add to a register (e.g. if performing the
instruction r1 = add r2, 70; , 70 is an immediate value, as opposed to
say, adding two values stored in registers r1 = add r2,r3) and can
thus only offset a certain "small" distance from an address. We can
also see that our a_var_with_value lives in the same place.

main however lives in the .text section, as we expect (remember the
name "text" and "code" are used interchangeably to refer to a
program in memory.

Computer Science from the Bottom Up

227

3.3.3 Sections and Segments together

1 $ readelf --segments /bin/ls

Elf file type is EXEC (Executable file)
Entry point 0x100026c0

5 There are 8 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x10000034 0x10000034 0x00100 0x00100 R E 0x4

10 INTERP 0x000154 0x10000154 0x10000154 0x0000d 0x0000d R 0x1
[Requesting program interpreter: /lib/ld.so.1]

LOAD 0x000000 0x10000000 0x10000000 0x14d5c 0x14d5c R E 0x10000
LOAD 0x014d60 0x10024d60 0x10024d60 0x002b0 0x00b7c RWE 0x10000
DYNAMIC 0x014f00 0x10024f00 0x10024f00 0x000d8 0x000d8 RW 0x4

15 NOTE 0x000164 0x10000164 0x10000164 0x00020 0x00020 R 0x4
GNU_EH_FRAME 0x014d30 0x10014d30 0x10014d30 0x0002c 0x0002c R 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

Section to Segment mapping:
20 Segment Sections...

00
01 .interp
02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_ r .rela.dyn .rela.plt .init .text .fini .rodata .eh_frame_hdr
03 .data .eh_frame .got2 .dynamic .ctors .dtors .jcr .got .sdata .sbss .p lt .bss

25 04 .dynamic
05 .note.ABI-tag
06 .eh_frame_hdr
07

Example 3.3.3.1 Sections and Segments

Computer Science from the Bottom Up

228

Example 3.3.3.1, Sections and Segments shows how readelf shows
us the segments and section mappings in the ELF file for the binary
/bin/ls .

Skipping to the bottom of the output, we can see what sections have
been moved into what segments. So, for example the .interp section
is placed into an INTERP flagged segment. Notice that readelf tells us
it is requesting the interpreter /lib/ld.so.1 ; this is the dynamic
linker which is run to prepare the binary for execution.

Looking at the two LOAD segments we can see the distinction
between text and data. Notice how the first one has only "read" and
"execute" permissions, whilst the next one has read, write and
execute permissions? These describe the code (r/w) and data (r/w/e)
segments.

But data should not need to be executable! Indeed, on most
architectures (for example, the most common x86) the data section
will not be marked as having the data section executable. However,
the example output above was taken from a PowerPC machine which
has a slightly different programming model (ABI, see below) requiring
that the data section be executable 1. Such is the life of a systems
programmer, where rules were made to be broken!

The other interesting thing to note is that the file size is the same as
the memory size for the code segment, however memory size is
greater than the file size for the data segment. This comes from the
BSS section which holds zeroed global variables.

4 ELF Executables
Executables are of course one of the primary uses of the ELF format.
Contained within the binary is everything required for the operating
system to execute the code as intended.

Since an executable is designed to be run in a process with a unique
address space (see Chapter 6, Virtual Memory) the code can make
assumptions about where the various parts of the program will be
loaded in memory. Example 4.1, Segments of an executable file shows
an example using the readelf tool to examine the segments of an
executable file. We can see the virtual addresses at which the LOAD

1. For those that are curious, the PowerPC ABI calls stubs for functions in
dynamic libraries directly in the GOT, rather than having them bounce
through a separate PLT entry. Thus the processor needs execute
permissions for the GOT section, which you can see is embedded in the
data segment. This should make sense after reading the dynamic linking
chapter!

Computer Science from the Bottom Up

229

segments are required to be placed at. We can further see that one
segment is for code — it has read and execute permissions only —
and one is for data, unsurprisingly with read and write permissions,
but importantly no execute permissions (without execute permissions,
even if a bug allowed an attacker to introduce arbitrary data the
pages backing it would not be marked with execute permissions, and
most processors will hence disallow any execution of code in those
pages).

Computer Science from the Bottom Up

230

1 $ readelf --segments /bin/ls

Elf file type is EXEC (Executable file)
Entry point 0x4046d4

5 There are 8 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
10 PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x00000000000001c0 0x00000000000001c0 R E 8
INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200

0x000000000000001c 0x000000000000001c R 1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

15 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000019ef4 0x0000000000019ef4 R E 200000

LOAD 0x000000000001a000 0x000000000061a000 0x000000000061a000
0x000000000000077c 0x0000000000001500 RW 200000

DYNAMIC 0x000000000001a028 0x000000000061a028 0x000000000061a028
20 0x00000000000001d0 0x00000000000001d0 RW 8

NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c
0x0000000000000044 0x0000000000000044 R 4

GNU_EH_FRAME 0x0000000000017768 0x0000000000417768 0x0000000000417768
0x00000000000006fc 0x00000000000006fc R 4

25 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 8

Section to Segment mapping:
Segment Sections...

30 00

Computer Science from the Bottom Up

231

01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .hash .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
04 .dynamic

35 05 .note.ABI-tag .note.gnu.build-id
06 .eh_frame_hdr
07

Example 4.1 Segments of an executable file

The program segments must be loaded at these addresses; the last
step of the linker is to resolve most relocations (Section 3.2, Symbols
and Relocations) and patch them with the assumed absolute
addresses — the data describing the relocation is then discarded in
the final binary and there is no longer a way to find this information.

In reality, executables generally have external dependencies on
shared libraries, or pieces of common code abstracted and shared
among the entire system — almost all of the confusing parts of
Example 4.1, Segments of an executable file relate to the use of
shared libraries. Libraries are discussed in Section 5, Libraries,
dynamic libraries in Chapter 9, Dynamic Linking.

5 Libraries
Developers soon tired of having to write everything from scratch, so
one of the first inventions of computer science was libraries.

A library is simply a collection of functions which you can call from
your program. Obviously a library has many advantages, not least of
which is that you can save much time by reusing work someone else
has already done and generally be more confident that it has fewer
bugs (since probably many other people use the libraries too, and you
benefit from having them finding and fixing bugs). A library is exactly
like an executable, except instead of running directly the library
functions are invoked with parameters from your executable.

5.1 Static Libraries
The most straight forward way of using a library function is to have

Computer Science from the Bottom Up

232

the object files from the library linked directly into your final
executable, just as with those you have compiled yourself. When
linked like this the library is called a static library, because the library
will remain unchanged unless the program is recompiled.

This is the most straight forward way of using a library as the final
result is a simple executable with no dependencies.

5.1.1 Inside static libraries
A static library is simply a group of object files. The object files are
kept in an archive, which leads to their usual .a suffix extension. You
can think of archives as similar to a zip file, but without
compression.

Below we show the creation of basic static library and introduce some
common tools for working with libraries.

Computer Science from the Bottom Up

233

1 $ cat library.c
/* Library Function */
int function(int input)
{

5 return input + 10;
}

$ cat library.h
/* Function Definition */

10 int function(int);

$ cat program.c
#include <stdio.h>
/* Library header file */

15 #include "library.h"

int main(void)
{

int d = function(100);
20

printf("%d\n", d);
}

$ gcc -c library.c
25 $ ar rc libtest.a library.o

$ ranlib ./libtest.a
$ nm --print-armap ./libtest.a

Archive index:
30 function in library.o

Computer Science from the Bottom Up

234

library.o:
00000000 T function

35 $ gcc -L . program.c -ltest -o program

$./program
110

Example 5.1.1.1 Creating and using a static library

Firstly we compile our library to an object file, just as we have seen in
the previous chapter.

Notice that we define the library API in the header file. The API
consists of function definitions for the functions in the library; this is
so that the compiler knows what types the functions take when
building object files that reference the library (e.g. program.c , which
#include s the header file).

We create the library ar (short for "archive") command. By convention
static library file names are prefixed with lib and have the extension
.a . The c argument tells the program to create the archive, and a

tells archive to add the object files specified into the library file.1

Next we use the ranlib application to make a header in the library
with the symbols of the object file contents. This helps the compiler to
quickly reference symbols; in the case where we just have one this
step may seem a little redundant; however a large library may have
thousands of symbols meaning an index can significantly speed up
finding references. We inspect this new header with the nm
application. We see the function symbol for the function() function
at offset zero, as we expect.

1. Archives created with ar pop up in a few different places around Linux
systems other than just creating static libraries. One widely used
application is in the .deb packaging format used with Debian, Ubuntu
and some other Linux systems is one example. debs use archives to
keep all the application files together in the one package file. RedHat
RPM packages use an alternate but similar format called cpio. Of course
the canonical application for keeping files together is the tar file,
which is a common format to distribute source code.

Computer Science from the Bottom Up

235

You then specify the library to the compiler with -lname where name
is the filename of the library without the prefix lib . We also provide
an extra search directory for libraries, namely the current directory
(-L .), since by default the current directory is not searched for
libraries.

The final result is a single executable with our new library included.

5.1.2 Static Linking Drawbacks
Static linking is very straight forward, but has a number of
drawbacks.

There are two main disadvantages; firstly if the library code is
updated (to fix a bug, say) you have to recompile your program into a
new executable and secondly, every program in the system that uses
that library contains a copy in its executable. This is very inefficient
(and a pain if you find a bug and have to recompile, as per point one).

For example, the C library (glibc) is included in all programs, and
provides all the common functions such as printf .

5.2 Shared Libraries
Shared libraries are an elegant way around the problems posed by a
static library. A shared library is a library that is loaded dynamically
at runtime for each application that requires it.

The application simply leaves pointers that it will require a certain
library, and when the function call is made the library is loaded into
memory and executed. If the library is already loaded for another
application, the code can be shared between the two, saving
considerable resources with commonly used libraries.

This process, called dynamic linking, is one of the more intricate
parts of a modern operating system. As such, we dedicate the next
chapter to investigating the dynamic linking process.

6 Extending ELF concepts
6.1 Debugging
Traditionally the primary method of post mortem debugging is
referred to as the core dump. The term core comes from the original
physical characteristics of magnetic core memory, which uses the

Computer Science from the Bottom Up

236

orientation of small magnetic rings to store state.

Thus a core dump is simply a complete snapshot of the program as it
was running at a particular time. A debugger can then be used to
examine this dump and reconstruct the program state. Example 6.1.1,
Example of creating a core dump and using it with gdb shows a
sample program that writes to a random memory location in order to
force a crash. At this point the processes will be halted and a dump of
the current state is recorded.

Computer Science from the Bottom Up

237

1 $ cat coredump.c
int main(void) {

char *foo = (char*)0x12345;
*foo = 'a';

5
return 0;

}

$ gcc -Wall -g -o coredump coredump.c
10

$./coredump
Segmentation fault (core dumped)

$ file ./core
15 ./core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from './coredump'

$ gdb ./coredump
...
(gdb) core core

20 [New LWP 31614]
Core was generated by `./coredump'.
Program terminated with signal 11, Segmentation fault.
#0 0x080483c4 in main () at coredump.c:3
3 *foo = 'a';

25 (gdb)

Example 6.1.1 Example of creating a core dump and using
it with gdb

Thus a core-dump is just another ELF file with a range of sections
understood to the debugger to represent parts of the running
program.

Computer Science from the Bottom Up

238

6.1.1 Symbols and Debugging Information
As Example 6.1.1, Example of creating a core dump and using it with
gdb shows, the debugger gdb requires the original executable and
the core dump to reconstruct the environment for the debugging
session. Note that the original executable was built with the -g flag,
which instructs the compiler to include all debugging information.
This extra debugging information is kept in special sections of the
ELF file. It describes in detail things like what register values
currently hold which variables used in the code, size of variables,
length of arrays, etc. It is generally in the standard DWARF format (a
pun on the almost-synonym ELF).

Including debugging information can make executable files and
libraries very large; although this data is not required resident in
memory for actually running it can still take up considerable disk
space. Thus the usual process is to strip this information from the
ELF file. While it is possible to arrange for shipping of both stripped
and unstripped files, most all current binary distribution methods
provide the debugging information in separate files. The objcopy tool
can be used to extract the debugging information (--only-keep-debug)
and then add a link in the original executable to this stripped
information (--add-gnu-debuglink). After this is done, a special section
called .gnu_debuglink will be present in the original executable,
which contains a hash so that when a debugging sessions starts the
debugger can be sure it associates the right debugging information
with the right executable.

Computer Science from the Bottom Up

239

1 $ gcc -g -shared -o libtest.so libtest.c
$ objcopy --only-keep-debug libtest.so libtest.debug
$ objcopy --add-gnu-debuglink=libtest.debug libtest.so
$ objdump -s -j .gnu_debuglink libtest.so

5
libtest.so: file format elf32-i386

Contents of section .gnu_debuglink:
0000 6c696274 6573742e 64656275 67000000 libtest.debug...

10 0010 52a7fd0a R...

Example 6.1.1.1 Example of stripping debugging
information into separate files using objcopy

Symbols take up much less space, but are also targets for removal
from final output. Once the individual object files of an executable are
linked into the single final image there is generally no need for most
symbols to remain. As discussed in Section 3.2, Symbols and
Relocations symbols are required to fix up relocation entries, but
once this is done the symbols are not strictly necessary for running
the final program. On Linux the GNU toolchain strip program
provides options to remove symbols. Note that some symbols are
required to be resolved at run-time (for dynamic linking, the focus of
Chapter 9, Dynamic Linking) but these are put in separate dynamic
symbol tables so they will not be removed and render the final output
useless.

6.1.2 Inside coredumps
A coredump is really just another ELF file; this illustrates the
flexibility of ELF as a binary format.

Computer Science from the Bottom Up

240

1 $ readelf --all ./core
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32

5 Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: CORE (Core file)

10 Machine: Intel 80386
Version: 0x1
Entry point address: 0x0
Start of program headers: 52 (bytes into file)
Start of section headers: 0 (bytes into file)

15 Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 15
Size of section headers: 0 (bytes)

20 Number of section headers: 0
Section header string table index: 0

There are no sections in this file.

25 There are no sections to group in this file.

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
NOTE 0x000214 0x00000000 0x00000000 0x0022c 0x00000 0

30 LOAD 0x001000 0x08048000 0x00000000 0x01000 0x01000 R E 0x1000

Computer Science from the Bottom Up

241

LOAD 0x002000 0x08049000 0x00000000 0x01000 0x01000 RW 0x1000
LOAD 0x003000 0x489fc000 0x00000000 0x01000 0x1b000 R E 0x1000
LOAD 0x004000 0x48a17000 0x00000000 0x01000 0x01000 R 0x1000
LOAD 0x005000 0x48a18000 0x00000000 0x01000 0x01000 RW 0x1000

35 LOAD 0x006000 0x48a1f000 0x00000000 0x01000 0x153000 R E 0x1000
LOAD 0x007000 0x48b72000 0x00000000 0x00000 0x01000 0x1000
LOAD 0x007000 0x48b73000 0x00000000 0x02000 0x02000 R 0x1000
LOAD 0x009000 0x48b75000 0x00000000 0x01000 0x01000 RW 0x1000
LOAD 0x00a000 0x48b76000 0x00000000 0x03000 0x03000 RW 0x1000

40 LOAD 0x00d000 0xb771c000 0x00000000 0x01000 0x01000 RW 0x1000
LOAD 0x00e000 0xb774d000 0x00000000 0x02000 0x02000 RW 0x1000
LOAD 0x010000 0xb774f000 0x00000000 0x01000 0x01000 R E 0x1000
LOAD 0x011000 0xbfeac000 0x00000000 0x22000 0x22000 RW 0x1000

45 There is no dynamic section in this file.

There are no relocations in this file.

There are no unwind sections in this file.
50

No version information found in this file.

Notes at offset 0x00000214 with length 0x0000022c:
Owner Data size Description

55 CORE 0x00000090 NT_PRSTATUS (prstatus structure)
CORE 0x0000007c NT_PRPSINFO (prpsinfo structure)
CORE 0x000000a0 NT_AUXV (auxiliary vector)
LINUX 0x00000030 Unknown note type: (0x00000200)

60 $ eu-readelf -n ./core

Computer Science from the Bottom Up

242

Note segment of 556 bytes at offset 0x214:
Owner Data size Type
CORE 144 PRSTATUS

65 info.si_signo: 11, info.si_code: 0, info.si_errno: 0, cursig: 11
sigpend: <>
sighold: <>
pid: 31614, ppid: 31544, pgrp: 31614, sid: 31544
utime: 0.000000, stime: 0.000000, cutime: 0.000000, cstime: 0.000000

70 orig_eax: -1, fpvalid: 0
ebx: 1219973108 ecx: 1243440144 edx: 1
esi: 0 edi: 0 ebp: 0xbfecb828
eax: 74565 eip: 0x080483c4 eflags: 0x00010286
esp: 0xbfecb818

75 ds: 0x007b es: 0x007b fs: 0x0000 gs: 0x0033 cs: 0x0073 ss: 0x007b
CORE 124 PRPSINFO

state: 0, sname: R, zomb: 0, nice: 0, flag: 0x00400400
uid: 1000, gid: 1000, pid: 31614, ppid: 31544, pgrp: 31614, sid: 31544
fname: coredump, psargs: ./coredump

80 CORE 160 AUXV
SYSINFO: 0xb774f414
SYSINFO_EHDR: 0xb774f000
HWCAP: 0xafe8fbff <fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov clflush dts acpi mmx fxsr sse sse2 ss tm pbe>
PAGESZ: 4096

85 CLKTCK: 100
PHDR: 0x8048034
PHENT: 32
PHNUM: 8
BASE: 0

90 FLAGS: 0

Computer Science from the Bottom Up

243

ENTRY: 0x8048300
UID: 1000
EUID: 1000
GID: 1000

95 EGID: 1000
SECURE: 0
RANDOM: 0xbfecba1b
EXECFN: 0xbfecdff1
PLATFORM: 0xbfecba2b

100 NULL
LINUX 48 386_TLS

index: 6, base: 0xb771c8d0, limit: 0x000fffff, flags: 0x00000051
index: 7, base: 0x00000000, limit: 0x00000000, flags: 0x00000028
index: 8, base: 0x00000000, limit: 0x00000000, flags: 0x00000028

Example 6.1.2.1 Example of using readelf and eu-readelf to
examine a coredump.

In Example 6.1.2.1, Example of using readelf and eu-readelf to
examine a coredump. we can see an examination of the core file
produced by Example 6.1.1, Example of creating a core dump and
using it with gdb using firstly the readelf tool. There are no sections,
relocations or other extraneous information in the file that may be
required for loading an executable or library; it simply consists of a
series of program headers describing LOAD segments. These
segments are raw data dumps, created by the kernel, of the current
memory allocations.

The other component of the core dump is the NOTE sections which
contain data necessary for debugging but not necessarily captured in
straight snapshot of the memory allocations. The eu-readelf program
used in the second part of the figure provides a more complete view
of the data by decoding it.

The PRSTATUS note gives a range of interesting information about the
process as it was running; for example we can see from cursig that
the program received a signal 11, or segmentation fault, as we would
expect. Along with process number information, it also includes a
dump of all the current registers. Given the register values, the
debugger can reconstruct the stack state and hence provide a

Computer Science from the Bottom Up

244

backtrace; combined with the symbol and debugging information
from the original binary the debugger can show exactly how you
reached the current point of execution.

Another interesting output is the current auxiliary vector (AUXV),
discussed in Section 8.1, Kernel communication to programs. The
386_TLS describes global descriptor table entries used for the x86

implementation of thread-local storage (see Section 4.1.1.3, Fast
System Calls for more information on use of segmentation, and
Section 4.3.1.1, Threads for information on threads1).

The kernel creates the core dump file within the bounds of the
current ulimit settings — since a program using a lot of memory
could result in a very large dump, potentially filling up disk and
making problems even worse, generally the ulimit is set low or even
at zero, since most non-developers have little use for a core dump file.
However the core dump remains the single most useful way to debug
an unexpected situation in a postmortem fashion.

6.2 Custom sections
For the most part, organisation of code, data and symbols is
something a programmer can leave up the toolchain defaults.
However, there are times when it makes sense to extend or customise
sections and their contents. One common example of this is with
Linux kernel modules which are used to dynamically load drivers and
other features into the running kernel. Because these modules are
not portable, in so much as they only work with one fixed kernel build
version, the interface between modules and the kernel can be flexible
and is not bound to particular standards. This means the methods of
storing things like license information, authorship, dependencies and
paramaters for the moudule can be uniquely and wholly defined by
the kernel.

The modinfo tool can inspect this information within a module and
present it to the user. Below we use the example of the FUSE Linux
kernel module, which allows user-space libraries to provide file-
system implementations to the kernel.

1. For a multi-threaded application, there would be duplicate entries for
each thread running. The debugger will understand this, and it is how
gdb implements the thread command to show and switch between
threads.

Computer Science from the Bottom Up

245

1 $ cd /lib/modules/$(uname -r)

$ sudo modinfo ./kernel/fs/fuse/fuse.ko
filename: /lib/modules/3.2.0-4-amd64/./kernel/fs/fuse/fuse.ko

5 alias: devname:fuse
alias: char-major-10-229
license: GPL
description: Filesystem in Userspace
author: Miklos Szeredi <miklos@szeredi.hu>

10 depends:
intree: Y
vermagic: 3.2.0-4-amd64 SMP mod_unload modversions
parm: max_user_bgreq:Global limit for the maximum number of backgrounded requests an unprivileged user can set (uint)
parm: max_user_congthresh:Global limit for the maximum congestion threshold an unprivileged user can set (uint)

15
$ objdump -s -j .modinfo ./kernel/fs/fuse/fuse.ko

./kernel/fs/fuse/fuse.ko: file format elf64-x86-64

20 Contents of section .modinfo:
0000 616c6961 733d6465 766e616d 653a6675 alias=devname:fu
0010 73650061 6c696173 3d636861 722d6d61 se.alias=char-ma
0020 6a6f722d 31302d32 32390070 61726d3d jor-10-229.parm=
0030 6d61785f 75736572 5f636f6e 67746872 max_user_congthr

25 0040 6573683a 476c6f62 616c206c 696d6974 esh:Global limit
0050 20666f72 20746865 206d6178 696d756d for the maximum
0060 20636f6e 67657374 696f6e20 74687265 congestion thre
0070 73686f6c 6420616e 20756e70 72697669 shold an unprivi
0080 6c656765 64207573 65722063 616e2073 leged user can s

30 0090 65740070 61726d74 7970653d 6d61785f et.parmtype=max_

Computer Science from the Bottom Up

246

00a0 75736572 5f636f6e 67746872 6573683a user_congthresh:
00b0 75696e74 00706172 6d3d6d61 785f7573 uint.parm=max_us
00c0 65725f62 67726571 3a476c6f 62616c20 er_bgreq:Global
00d0 6c696d69 7420666f 72207468 65206d61 limit for the ma

35 00e0 78696d75 6d206e75 6d626572 206f6620 ximum number of
00f0 6261636b 67726f75 6e646564 20726571 backgrounded req
0100 75657374 7320616e 20756e70 72697669 uests an unprivi
0110 6c656765 64207573 65722063 616e2073 leged user can s
0120 65740070 61726d74 7970653d 6d61785f et.parmtype=max_

40 0130 75736572 5f626772 65713a75 696e7400 user_bgreq:uint.
0140 6c696365 6e73653d 47504c00 64657363 license=GPL.desc
0150 72697074 696f6e3d 46696c65 73797374 ription=Filesyst
0160 656d2069 6e205573 65727370 61636500 em in Userspace.
0170 61757468 6f723d4d 696b6c6f 7320537a author=Miklos Sz

45 0180 65726564 69203c6d 696b6c6f 7340737a eredi <miklos@sz
0190 65726564 692e6875 3e000000 00000000 eredi.hu>.......
01a0 64657065 6e64733d 00696e74 7265653d depends=.intree=
01b0 59007665 726d6167 69633d33 2e322e30 Y.vermagic=3.2.0
01c0 2d342d61 6d643634 20534d50 206d6f64 -4-amd64 SMP mod

50 01d0 5f756e6c 6f616420 6d6f6476 65727369 _unload modversi
01e0 6f6e7320 00 ons .

Example 6.2.1 Example of modinfo output

As you can see above, modinfo is parsing the .modinfo section
embedded within the module file to present the details of the module.
Example 6.2.2, Putting module info into sections shows how one field,
the "author" is put into the module. The code mostly comes from
include/linux/module.h .

Computer Science from the Bottom Up

247

1 /*
* Start at the bottom, and work your way up!
*/

5 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
#define ___PASTE(a,b) a##b
#define __PASTE(a,b) ___PASTE(a,b)

10 #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)

/* Indirect stringification. Doing two levels allows the parameter to be a
* macro itself. For example, compile with -DFOO=bar, __stringify(FOO)
* converts to "bar".

15 */

#define __stringify_1(x...) #x
#define __stringify(x...) __stringify_1(x)

20 #define __MODULE_INFO(tag, name, info) \
static const char __UNIQUE_ID(name)[] \

__used __attribute__((section(".modinfo"), unused, aligned(1))) \
= __stringify(tag) "=" info

25 /* Generic info of form tag = "info" */
#define MODULE_INFO(tag, info) __MODULE_INFO(tag, tag, info)

/*
* Author(s), use "Name <email>" or just "Name", for multiple

30 * authors use multiple MODULE_AUTHOR() statements/lines.

Computer Science from the Bottom Up

248

*/
#define MODULE_AUTHOR(_author) MODULE_INFO(author, _author)

/* ---- */
35

MODULE_AUTHOR("Your Name <your@name.com>");

Example 6.2.2 Putting module info into sections

At first, this looks like a macro nightmare, but it can be unravelled
step by step. Starting at the bottom, we see that MODULE_AUTHOR is a
wrapper around the more generic __MODULE_INFO macro, which is
where most of the magic happens. There, we can see that we are
building up a static const char [] variable to hold the string
"author=Your Name <your@name.com>" . The interesting thing to note is

that the variable has an extra parameter
__attribute__((section(".modinfo"))) which is telling the compiler to

not put this in the data section with all the other variables, but to
stash it in its own ELF section called .modinfo . The other parameters
stop the variable being optimised away because it looks unused and
to ensure we pack the variables in next to each other by specifying
the alignment.

There is extensive use of stringification macros, which are rather
arcane tricks used within the C pre-processor to ensure that strings
and definitions can live together. The only other trick is the use of the
__COUNTER__ special define provided by gcc , which provides a unique,

incrementing value each time it is called; this allows multiple
MODULE_AUTHOR calls to in the one file and not end up with the same

variable name.

We can inspect the symbols placed in the final module to see the end
result:

Computer Science from the Bottom Up

249

1 $ objdump --syms ./fuse.ko | grep modinfo

0000000000000000 l d .modinfo 0000000000000000 .modinfo
0000000000000000 l O .modinfo 0000000000000013 __UNIQUE_ID_alias1

5 0000000000000013 l O .modinfo 0000000000000018 __UNIQUE_ID_alias0
000000000000002b l O .modinfo 0000000000000011 __UNIQUE_ID_alias8
000000000000003c l O .modinfo 000000000000000e __UNIQUE_ID_alias7
000000000000004a l O .modinfo 0000000000000068 __UNIQUE_ID_max_user_congthresh6
00000000000000b2 l O .modinfo 0000000000000022 __UNIQUE_ID_max_user_congthreshtype5

10 00000000000000d4 l O .modinfo 000000000000006e __UNIQUE_ID_max_user_bgreq4
0000000000000142 l O .modinfo 000000000000001d __UNIQUE_ID_max_user_bgreqtype3
000000000000015f l O .modinfo 000000000000000c __UNIQUE_ID_license2
000000000000016b l O .modinfo 0000000000000024 __UNIQUE_ID_description1
000000000000018f l O .modinfo 000000000000002a __UNIQUE_ID_author0

15 00000000000001b9 l O .modinfo 0000000000000011 __UNIQUE_ID_alias0
00000000000001d0 l O .modinfo 0000000000000009 __module_depends
00000000000001d9 l O .modinfo 0000000000000009 __UNIQUE_ID_intree1
00000000000001e2 l O .modinfo 000000000000002f __UNIQUE_ID_vermagic0

Example 6.2.3 Module symbols in .modinfo sections

6.3 Linker Scripts
In Example 3.3.2.2, Sections we described how sections make up
segments in the final output. It is the job of the linker to build these
sections into segments; to achieve this it uses a linker script which
describes where segments start, what sections go into them and
various other parameters.

Example 6.3.1, The default linker script shows an extract of the
default linker script, which the linker will show when given its
verbose flag via specifying -Wl,--verbose to gcc. The default script is
built-in to the linker and is based on the standard API definitions to
create working user-space programs for the building platform.

Computer Science from the Bottom Up

250

1 $ gcc -Wl,--verbose -o test test.c
GNU ld (GNU Binutils for Debian) 2.26
...
using internal linker script:

5 ==
OUTPUT_FORMAT("elf64-x86-64", "elf64-x86-64",

"elf64-x86-64")
OUTPUT_ARCH(i386:x86-64)
ENTRY(_start)

10 SEARCH_DIR("=/usr/local/lib/x86_64-linux-gnu"); ...
SECTIONS
{

/* Read-only sections, merged into text segment: */
PROVIDE (__executable_start = SEGMENT_START("text-segment", 0x400000)); . = SEGMENT_START("text-segment", 0x400000) + SIZEOF_HEADERS;

15 .interp : { *(.interp) }
.note.gnu.build-id : { *(.note.gnu.build-id) }
.hash : { *(.hash) }
.gnu.hash : { *(.gnu.hash) }
.dynsym : { *(.dynsym) }

20 .dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rela.dyn :

25 {
...
}

PROVIDE (etext = .);
.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) }

30 .rodata1 : { *(.rodata1) }

Computer Science from the Bottom Up

251

...

Example 6.3.1 The default linker script

You can roughly see how the linker script specifies things like starting
locations and what sections to group into various segments. In the
same way -Wl is used to pass the --verbose to the linker via gcc,
customised linker scripts can be provided by flags. Regular user-
space developers are unlikely to need to override the default linker
script. However, often very customised applications such as kernel
builds require customised linker scripts.

7 ABIs
An ABI is a term you will hear a lot about when working with systems
programming. We have talked extensively about API, which are
interfaces the programmer sees to your code.

ABI's refer to lower level interfaces which the compiler, operating
system and, to some extent, processor, must agree on to communicate
together. Below we introduce a number of concepts which are
important to understanding ABI considerations.

7.1 Byte Order
Endianess

7.2 Calling Conventions
7.2.1 Passing parameters
registers or stack?

7.2.2 Function Descriptors
On many architectures you must call a function through a function
descriptor, rather than directly.

For example, on IA64 a function descriptor consists of two

Computer Science from the Bottom Up

252

components; the address of the function (that being a 64 bit, or 8 byte
value) and the address of the global pointer (gp). The ABI specifies
that r1 should always contain the gp value for a function. This means
that when you call a function, it is the callees job to save their gp
value, set r1 to be the new value (from the function descriptor) and
then call the function.

This may seem like a strange way to do things, but it has very useful
practical implications as you will see in the next chapter about global
offset tables. On IA64 an add instruction can only take a maximum 22
bit immediate value1. An immediate value is one that is specified
directly, rather than in a register (e.g. in add r1 + 100 100 is the
immediate value).

You might recognise 22 bits as being able to represent 4194304
bytes, or 4MB. Thus each function can directly offset into an area of
memory 4MB big without having to take the penalty of loading any
values into a register. If the compiler, linker and loader all agree on
what the global pointer is pointing to (as specified in the ABI)
performance can be improved by less loading.

8 Starting a process
We mentioned before that simply saying the program starts with the
main() function is not quite true. Below we examine what happens to

a typical dynamically linked program when it is loaded and run
(statically linked programs are similar but different XXX should we go
into this?).

Firstly, in response to an exec system call the kernel allocates the
structures for a new process and reads the ELF file specified from
disk.

We mentioned that ELF has a program interpreter field, PT_INTERP ,
which can be set to 'interpret' the program. For dynamically linked
applications that interpreter is the dynamic linker, namely ld.so,
which allows some of the linking process to be done on the fly before
the program starts.

In this case, the kernel also reads in the dynamic linker code, and
starts the program from the entry point address as specified by it. We
examine the role of the dynamic linker in depth in the next chapter,
but suffice to say it does some setup like loading any libraries
required by the application (as specified in the dynamic section of the

1. Technically this is because of the way IA64 bundles instructions. Three
instructions are put into each bundle, and there is only enough room to
keep a 22 bit value to keep the bundle together.

Computer Science from the Bottom Up

253

binary) and then starts execution of the program binary at its entry
point address (i.e. the _init function).

8.1 Kernel communication to programs
The kernel needs to communicate some things to programs when they
start up; namely the arguments to the program, the current
environment variables and a special structure called the Auxiliary
Vector or auxv (you can request the the dynamic linker show you
some debugging output of the auxv by specifying the environment
value LD_SHOW_AUXV=1).

The arguments and environment at fairly straight forward, and the
various incarnations of the exec system call allow you to specify
these for the program.

The kernel communicates this by putting all the required information
on the stack for the newly created program to pick up. Thus when the
program starts it can use its stack pointer to find the all the startup
information required.

The auxiliary vector is a special structure that is for passing
information directly from the kernel to the newly running program. It
contains system specific information that may be required, such as
the default size of a virtual memory page on the system or hardware
capabilities; that is specific features that the kernel has identified the
underlying hardware has that userspace programs can take
advantage of.

8.1.1 Kernel Library
We mentioned previously that system calls are slow, and modern
systems have mechanisms to avoid the overheads of calling a trap to
the processor.

In Linux, this is implemented by a neat trick between the dynamic
loader and the kernel, all communicated with the AUXV structure.
The kernel actually adds a small shared library into the address space
of every newly created process which contains a function that makes
system calls for you. The beauty of this system is that if the
underlying hardware supports a fast system call mechanism the
kernel (being the creator of the library) can use it, otherwise it can
use the old scheme of generating a trap. This library is named linux-
gate.so.1 , so called because it is a gateway to the inner workings of
the kernel.

When the kernel starts the dynamic linker it adds an entry to the auxv
called AT_SYSINFO_EHDR , which is the address in memory that the

Computer Science from the Bottom Up

254

special kernel library lives in. When the dynamic linker starts it can
look for the AT_SYSINFO_EHDR pointer, and if found load that library for
the program. The program has no idea this library exists; this is a
private arrangement between the dynamic linker and the kernel.

We mentioned that programmers make system calls indirectly
through calling functions in the system libraries, namely libc. libc can
check to see if the special kernel binary is loaded, and if so use the
functions within that to make system calls. As we mentioned, if the
kernel determines the hardware is capable, this will use the fast
system call method.

8.2 Starting the program
Once the kernel has loaded the interpreter it passes it to the entry
point as given in the interpreter file (note will not examine how the
dynamic linker starts at this stage; see Chapter 9, Dynamic Linking
for a full discussion of dynamic linking). The dynamic linker will jump
to the entry point address as given in the ELF binary.

Computer Science from the Bottom Up

255

1 $ cat test.c

int main(void)
{

5 return 0;
}

$ gcc -o test test.c

10 $ readelf --headers ./test | grep Entry
Entry point address: 0x80482b0

$ objdump --disassemble ./test

15 [...]

080482b0 <_start>:
80482b0: 31 ed xor %ebp,%ebp
80482b2: 5e pop %esi

20 80482b3: 89 e1 mov %esp,%ecx
80482b5: 83 e4 f0 and $0xfffffff0,%esp
80482b8: 50 push %eax
80482b9: 54 push %esp
80482ba: 52 push %edx

25 80482bb: 68 00 84 04 08 push $0x8048400
80482c0: 68 90 83 04 08 push $0x8048390
80482c5: 51 push %ecx
80482c6: 56 push %esi
80482c7: 68 68 83 04 08 push $0x8048368

30 80482cc: e8 b3 ff ff ff call 8048284 <__libc_start_main@plt>

Computer Science from the Bottom Up

256

80482d1: f4 hlt
80482d2: 90 nop
80482d3: 90 nop

35 08048368 <main>:
8048368: 55 push %ebp
8048369: 89 e5 mov %esp,%ebp
804836b: 83 ec 08 sub $0x8,%esp
804836e: 83 e4 f0 and $0xfffffff0,%esp

40 8048371: b8 00 00 00 00 mov $0x0,%eax
8048376: 83 c0 0f add $0xf,%eax
8048379: 83 c0 0f add $0xf,%eax
804837c: c1 e8 04 shr $0x4,%eax
804837f: c1 e0 04 shl $0x4,%eax

45 8048382: 29 c4 sub %eax,%esp
8048384: b8 00 00 00 00 mov $0x0,%eax
8048389: c9 leave
804838a: c3 ret
804838b: 90 nop

50 804838c: 90 nop
804838d: 90 nop
804838e: 90 nop
804838f: 90 nop

55 08048390 <__libc_csu_init>:
8048390: 55 push %ebp
8048391: 89 e5 mov %esp,%ebp
[...]

60 08048400 <__libc_csu_fini>:

Computer Science from the Bottom Up

257

8048400: 55 push %ebp
[...]

Example 8.2.1 Disassembley of program startup

Above we investigate the very simplest program. Using readelf we
can see that the entry point is the _start function in the binary. At
this point we can see in the disassembley some values are pushed
onto the stack. The first value, 0x8048400 is the __libc_csu_fini
function; 0x8048390 is the __libc_csu_init and then finally
0x8048368 , the main() function. After this the value
__libc_start_main function is called.

__libc_start_main is defined in the glibc sources sysdeps/generic/
libc-start.c . The file function is quite complicated and hidden
between a large number of defines, as it needs to be portable across
the very wide number of systems and architectures that glibc can run
on. It does a number of specific things related to setting up the C
library which the average programmer does not need to worry about.
The next point where the library calls back into the program is to
handle init code.

init and fini are two special concepts that call parts of code in
shared libraries that may need to be called before the library starts or
if the library is unloaded respectively. You can see how this might be
useful for library programmers to setup variables when the library is
started, or to clean up at the end. Originally the functions _init and
_fini were looked for in the library; however this became somewhat

limiting as everything was required to be in these functions. Below
we will examine just how the init / fini process works.

At this stage we can see that the __libc_start_main function will
receive quite a few input paramaters on the stack. Firstly it will have
access to the program arguments, environment variables and
auxiliary vector from the kernel. Then the initalization function will
have pushed onto the stack addresses for functions to handle init ,
fini , and finally the address of the main function itself.

We need some way to indicate in the source code that a function
should be called by init or fini . With gcc we use attributes to label
two functions as constructors and destructors in our main program.
These terms are more commonly used with object oriented languages
to describe object life cycles.

Computer Science from the Bottom Up

258

1 $ cat test.c
#include <stdio.h>

void __attribute__((constructor)) program_init(void) {
5 printf("init\n");

}

void __attribute__((destructor)) program_fini(void) {
printf("fini\n");

10 }

int main(void)
{

return 0;
15 }

$ gcc -Wall -o test test.c

$./test
20 init

fini

$ objdump --disassemble ./test | grep program_init
08048398 <program_init>:

25
$ objdump --disassemble ./test | grep program_fini
080483b0 <program_fini>:

$ objdump --disassemble ./test
30

Computer Science from the Bottom Up

259

[...]
08048280 <_init>:
8048280: 55 push %ebp
8048281: 89 e5 mov %esp,%ebp

35 8048283: 83 ec 08 sub $0x8,%esp
8048286: e8 79 00 00 00 call 8048304 <call_gmon_start>
804828b: e8 e0 00 00 00 call 8048370 <frame_dummy>
8048290: e8 2b 02 00 00 call 80484c0 <__do_global_ctors_aux>
8048295: c9 leave

40 8048296: c3 ret
[...]

080484c0 <__do_global_ctors_aux>:
80484c0: 55 push %ebp

45 80484c1: 89 e5 mov %esp,%ebp
80484c3: 53 push %ebx
80484c4: 52 push %edx
80484c5: a1 2c 95 04 08 mov 0x804952c,%eax
80484ca: 83 f8 ff cmp $0xffffffff,%eax

50 80484cd: 74 1e je 80484ed <__do_global_ctors_aux+0x2d>
80484cf: bb 2c 95 04 08 mov $0x804952c,%ebx
80484d4: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
80484da: 8d bf 00 00 00 00 lea 0x0(%edi),%edi
80484e0: ff d0 call *%eax

55 80484e2: 8b 43 fc mov 0xfffffffc(%ebx),%eax
80484e5: 83 eb 04 sub $0x4,%ebx
80484e8: 83 f8 ff cmp $0xffffffff,%eax
80484eb: 75 f3 jne 80484e0 <__do_global_ctors_aux+0x20>
80484ed: 58 pop %eax

60 80484ee: 5b pop %ebx

Computer Science from the Bottom Up

260

80484ef: 5d pop %ebp
80484f0: c3 ret
80484f1: 90 nop
80484f2: 90 nop

65 80484f3: 90 nop

$ readelf --sections ./test
There are 34 section headers, starting at offset 0xfb0:

70
Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 1

75 [2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 4
[3] .hash HASH 08048148 000148 00002c 04 A 4 0 4
[4] .dynsym DYNSYM 08048174 000174 000060 10 A 5 1 4
[5] .dynstr STRTAB 080481d4 0001d4 00005e 00 A 0 0 1
[6] .gnu.version VERSYM 08048232 000232 00000c 02 A 4 0 2

80 [7] .gnu.version_r VERNEED 08048240 000240 000020 00 A 5 1 4
[8] .rel.dyn REL 08048260 000260 000008 08 A 4 0 4
[9] .rel.plt REL 08048268 000268 000018 08 A 4 11 4
[10] .init PROGBITS 08048280 000280 000017 00 AX 0 0 4
[11] .plt PROGBITS 08048298 000298 000040 04 AX 0 0 4

85 [12] .text PROGBITS 080482e0 0002e0 000214 00 AX 0 0 16
[13] .fini PROGBITS 080484f4 0004f4 00001a 00 AX 0 0 4
[14] .rodata PROGBITS 08048510 000510 000012 00 A 0 0 4
[15] .eh_frame PROGBITS 08048524 000524 000004 00 A 0 0 4
[16] .ctors PROGBITS 08049528 000528 00000c 00 WA 0 0 4

90 [17] .dtors PROGBITS 08049534 000534 00000c 00 WA 0 0 4

Computer Science from the Bottom Up

261

[18] .jcr PROGBITS 08049540 000540 000004 00 WA 0 0 4
[19] .dynamic DYNAMIC 08049544 000544 0000c8 08 WA 5 0 4
[20] .got PROGBITS 0804960c 00060c 000004 04 WA 0 0 4
[21] .got.plt PROGBITS 08049610 000610 000018 04 WA 0 0 4

95 [22] .data PROGBITS 08049628 000628 00000c 00 WA 0 0 4
[23] .bss NOBITS 08049634 000634 000004 00 WA 0 0 4
[24] .comment PROGBITS 00000000 000634 00018f 00 0 0 1
[25] .debug_aranges PROGBITS 00000000 0007c8 000078 00 0 0 8
[26] .debug_pubnames PROGBITS 00000000 000840 000025 00 0 0 1

100 [27] .debug_info PROGBITS 00000000 000865 0002e1 00 0 0 1
[28] .debug_abbrev PROGBITS 00000000 000b46 000076 00 0 0 1
[29] .debug_line PROGBITS 00000000 000bbc 0001da 00 0 0 1
[30] .debug_str PROGBITS 00000000 000d96 0000f3 01 MS 0 0 1
[31] .shstrtab STRTAB 00000000 000e89 000127 00 0 0 1

105 [32] .symtab SYMTAB 00000000 001500 000490 10 33 53 4
[33] .strtab STRTAB 00000000 001990 000218 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)

110 O (extra OS processing required) o (OS specific), p (processor specific)

$ objdump --disassemble-all --section .ctors ./test

./test: file format elf32-i386
115

Contents of section .ctors:
8049528 ffffffff 98830408 00000000

Example 8.2.2 Constructors and Destructors

The last value pushed onto the stack for the __libc_start_main was
the initialisation function __libc_csu_init . If we follow the call chain
through from __libc_csu_init we can see it does some setup and

Computer Science from the Bottom Up

262

then calls the _init function in the executable. The _init function
eventually calls a function called __do_global_ctors_aux . Looking at
the disassembley of this function we can see that it appears to start at
address 0x804952c and loop along, reading an value and calling it. We
can see that this starting address is in the .ctors section of the file;
if we have a look inside this we see that it contains the first value -1 ,
a function address (in big endian format) and the value zero.

The address in big endian format is 0x08048398 , or the address of
program_init function! So the format of the .ctors section is firstly a

-1, and then the address of functions to be called on initialisation, and
finally a zero to indicate the list is complete. Each entry will be called
(in this case we only have the one function).

Once __libc_start_main has completed with the _init call it finally
calls the main() function! Remember that it had the stack setup
initially with the arguments and environment pointers from the
kernel; this is how main gets its argc, argv[], envp[] arguments. The
process now runs and the setup phase is complete.

A similar process is enacted with the .dtors for destructors when the
program exits. __libc_start_main calls these when the main()
function completes.

As you can see, a lot is done before the program gets to start, and
even a little after you think it is finished!

Chapter 9. Dynamic Linking
1 Code Sharing
We know that for the operating system code is considered read only,
and separate from data. It seems logical then that if programs can not
modify code and have large amounts of common code, instead of
replicating it for every executable it should be shared between many
executables.

With virtual memory this can be easily done. The physical pages of
memory the library code is loaded into can be easily referenced by
any number of virtual pages in any number of address spaces. So
while you only have one physical copy of the library code in system
memory, every process can have access to that library code at any
virtual address it likes.

Thus people quickly came up with the idea of a shared library which,
as the name suggests, is shared by multiple executables. Each

Computer Science from the Bottom Up

263

executable contains a reference essentially saying "I need library
foo". When the program is loaded, it is up to the system to either
check if some other program has already loaded the code for library
foo into memory, and thus share it by mapping pages into the
executable for that physical memory, or otherwise load the library
into memory for the executable.

This process is called dynamic linking because it does part of the
linking process "on the fly" as programs are executed in the system.

1.1 Dynamic Library Details
Libraries are very much like a program that never gets started. They
have code and data sections (functions and variables) just like every
executable; but no where to start running. They just provide a library
of functions for developers to call.

Thus ELF can represent a dynamic library just as it does an
executable. There are some fundamental differences, such as there is
no pointer to where execution should start, but all shared libraries
are just ELF objects like any other executable.

The ELF header has two mutually exclusive flags, ET_EXEC and
ET_DYN to mark an ELF file as either an executable or a shared object

file.

1.2 Including libraries in an executable
1.2.1 Compilation
When you compile your program that uses a dynamic library, object
files are left with references to the library functions just as for any
other external reference.

You need to include the header for the library so that the compiler
knows the specific types of the functions you are calling. Note the
compiler only needs to know the types associated with a function
(such as, it takes an int and returns a char *) so that it can
correctly allocate space for the function call.1

1. This has not always been the case with the C standard. Previously,
compilers would assume that any function it did not know about
returned an int . On a 32 bit system, the size of a pointer is the same
size as an int , so there was no problem. However, with a 64 bit system,
the size of a pointer is generally twice the size of an int so if the
function actually returns a pointer, its value will be destroyed. This is
clearly not acceptable, as the pointer will thus not point to valid

Computer Science from the Bottom Up

264

1.2.2 Linking
Even though the dynamic linker does a lot of the work for shared
libraries, the traditional linker still has a role to play in creating the
executable.

The traditional linker needs to leave a pointer in the executable so
that the dynamic linker knows what library will satisfy the
dependencies at runtime.

The dynamic section of the executable requires a NEEDED entry for
each shared library that the executable depends on.

Again, we can inspect these fields with the readelf program. Below
we have a look at a very standard binary, /bin/ls

1 $ readelf --dynamic /bin/ls

Dynamic segment at offset 0x22f78 contains 27 entries:
Tag Type Name/Value

5 0x0000000000000001 (NEEDED) Shared library: [librt.so.1]
0x0000000000000001 (NEEDED) Shared library: [libacl.so.1]
0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]
0x000000000000000c (INIT) 0x4000000000001e30
... snip ...

Example 1.2.2.1 Specifying Dynamic Libraries

You can see that it specifies three libraries. The most common library
shared by most, if not all, programs on the system is libc . There are
also some other libraries that the program needs to run correctly.

Reading the ELF file directly is sometimes useful, but the usual way
to inspect a dynamically linked executable is via ldd . ldd "walks"
the dependencies of libraries for you; that is if a library depends on
another library, it will show it to you.

memory. The C99 standard has changed such that you are required to
specify the types of included functions.

Computer Science from the Bottom Up

265

1 $ ldd /bin/ls
librt.so.1 => /lib/tls/librt.so.1 (0x2000000000058000)
libacl.so.1 => /lib/libacl.so.1 (0x2000000000078000)
libc.so.6.1 => /lib/tls/libc.so.6.1 (0x2000000000098000)

5 libpthread.so.0 => /lib/tls/libpthread.so.0 (0x20000000002e0000)
/lib/ld-linux-ia64.so.2 => /lib/ld-linux-ia64.so.2 (0x2000000000000000)
libattr.so.1 => /lib/libattr.so.1 (0x2000000000310000)

$ readelf --dynamic /lib/librt.so.1

10 Dynamic segment at offset 0xd600 contains 30 entries:
Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]
0x0000000000000001 (NEEDED) Shared library: [libpthread.so.0]
... snip ...

Example 1.2.2.2 Looking at dynamic libraries

We can see above that libpthread has been required from
somewhere. If we do a little digging, we can see that the requirement
comes from librt .

2 The Dynamic Linker
The dynamic linker is the program that manages shared dynamic
libraries on behalf of an executable. It works to load libraries into
memory and modify the program at runtime to call the functions in
the library.

ELF allows executables to specify an interpreter, which is a program
that should be used to run the executable. The compiler and static
linker set the interpreter of executables that rely on dynamic libraries
to be the dynamic linker.

Computer Science from the Bottom Up

266

1 ianw@lime:~/programs/csbu$ readelf --headers /bin/ls

Program Headers:
Type Offset VirtAddr PhysAddr

5 FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x4000000000000040 0x4000000000000040

0x0000000000000188 0x0000000000000188 R E 8
INTERP 0x00000000000001c8 0x40000000000001c8 0x40000000000001c8

0x0000000000000018 0x0000000000000018 R 1
10 [Requesting program interpreter: /lib/ld-linux-ia64.so.2]

LOAD 0x0000000000000000 0x4000000000000000 0x4000000000000000
0x0000000000022e40 0x0000000000022e40 R E 10000

LOAD 0x0000000000022e40 0x6000000000002e40 0x6000000000002e40
0x0000000000001138 0x00000000000017b8 RW 10000

15 DYNAMIC 0x0000000000022f78 0x6000000000002f78 0x6000000000002f78
0x0000000000000200 0x0000000000000200 RW 8

NOTE 0x00000000000001e0 0x40000000000001e0 0x40000000000001e0
0x0000000000000020 0x0000000000000020 R 4

IA_64_UNWIND 0x0000000000022018 0x4000000000022018 0x4000000000022018
20 0x0000000000000e28 0x0000000000000e28 R 8

Example 2.1 Checking the program interpreter

You can see above that the interpreter is set to be /lib/ld-linux-
ia64.so.2, which is the dynamic linker. When the kernel loads the
binary for execution, it will check if the PT_INTERP field is present,
and if so load what it points to into memory and start it.

We mentioned that dynamically linked executables leave behind
references that need to be fixed with information that isn't available
until runtime, such as the address of a function in a shared library.
The references that are left behind are called relocations.

Computer Science from the Bottom Up

267

2.1 Relocations
The essential part of the dynamic linker is fixing up addresses at
runtime, which is the only time you can know for certain where you
are loaded in memory. A relocation can simply be thought of as a note
that a particular address will need to be fixed at load time. Before the
code is ready to run you will need to go through and read all the
relocations and fix the addresses it refers to to point to the right
place.

Table 2.1.1 Relocation Example
Address Action
0x123456 Address of symbol "x"
0x564773 Function X

There are many types of relocation for each architecture, and each
types exact behaviour is documented as part of the ABI for the
system. The definition of a relocation is quite straight forward.

1 typedef struct {
Elf32_Addr r_offset; <--- address to fix
Elf32_Word r_info; <--- symbol table pointer and relocation type

}
5

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

10 } Elf32_Rela

Example 2.1.1 Relocation as defined by ELF

The r_offset field refers to the offset in the file that needs to be fixed
up. The r_info field specifies the type of relocation which describes
what exactly must be done to fix this code up. The simplest relocation
usually defined for an architecture is simply the value of the symbol.
In this case you simply substitute the address of the symbol at the
location specified, and the relocation has been "fixed-up".

Computer Science from the Bottom Up

268

The two types, one with an addend and one without specify different
ways for the relocation to operate. An addend is simply something
that should be added to the fixed up address to find the correct
address. For example, if the relocation is for the symbol i because
the original code is doing something like i[8] the addend will be set
to 8. This means "find the address of i , and go 8 past it".

That addend value needs to be stored somewhere. The two solutions
are covered by the two forms. In the REL form the addend is actually
store in the program code in the place where the fixed up address
should be. This means that to fix up the address properly, you need to
first read the memory you are about to fix up to get any addend, store
that, find the "real" address, add the addend to it and then write it
back (over the addend). The RELA format specifies the addend right
there in the relocation.

The trade offs of each approach should be clear. With REL you need
to do an extra memory reference to find the addend before the fixup,
but you don't waste space in the binary because you use relocation
target memory. With RELA you keep the addend with the relocation,
but waste that space in the on disk binary. Most modern systems use
RELA relocations.

2.1.1 Relocations in action
The example below shows how relocations work. We create two very
simple shared libraries and reference one from in the other.

Computer Science from the Bottom Up

269

1 $ cat addendtest.c
extern int i[4];
int *j = i + 2;

5 $ cat addendtest2.c
int i[4];

$ gcc -nostdlib -shared -fpic -s -o addendtest2.so addendtest2.c
$ gcc -nostdlib -shared -fpic -o addendtest.so addendtest.c ./addendtest2.so

10
$ readelf -r ./addendtest.so

Relocation section '.rela.dyn' at offset 0x3b8 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

15 0000000104f8 000f00000027 R_IA64_DIR64LSB 0000000000000000 i + 8

Example 2.1.1.1 Specifying Dynamic Libraries

We thus have one relocation in addendtest.so of type
R_IA64_DIR64LSB . If you look this up in the IA64 ABI, the acronym can

be broken down to

1. R_IA64 : all relocations start with this prefix.

2. DIR64 : a 64 bit direct type relocation

3. LSB : Since IA64 can operate in big and little endian modes,
this relocation is little endian (least significant byte).

The ABI continues to say that that relocation means "the value of the
symbol pointed to by the relocation, plus any addend". We can see we
have an addend of 8, since sizeof(int) == 4 and we have moved two
int's into the array (*j = i + 2). So at runtime, to fix this relocation
you need to find the address of symbol i and put its value, plus 8
into 0x104f8 .

Computer Science from the Bottom Up

270

2.2 Position Independence
In an executable file, the code and data segment is given a specified
base address in virtual memory. The executable code is not shared,
and each executable gets its own fresh address space. This means
that the compiler knows exactly where the data section will be, and
can reference it directly.

Libraries have no such guarantee. They can know that their data
section will be a specified offset from the base address; but exactly
where that base address is can only be known at runtime.

Consequently all libraries must be produced with code that can
execute no matter where it is put into memory, known as position
independent code (or PIC for short). Note that the data section is still
a fixed offset from the code section; but to actually find the address of
data the offset needs to be added to the load address.

3 Global Offset Tables
You might have noticed a critical problem with relocations when
thinking about the goals of a shared library. We mentioned previously
that the big advantage of a shared library with virtual memory is that
multiple programs can use the code in memory by sharing of pages.

The problem stems from the fact that libraries have no guarantee
about where they will be put into memory. The dynamic linker will
find the most convenient place in virtual memory for each library
required and place it there. Think about the alternative if this were
not to happen; every library in the system would require its own
chunk of virtual memory so that no two overlapped. Every time a new
library were added to the system it would require allocation.
Someone could potentially be a hog and write a huge library, not
leaving enough space for other libraries! And chances are, your
program doesn't ever want to use that library anyway.

Thus, if you modify the code of a shared library with a relocation, that
code no longer becomes sharable. We've lost the advantage of our
shared library.

Below we explain the mechanism for doing this.

3.1 The Global Offset Table
So imagine the situation where we take the value of a symbol. With
only relocations, we would have the dynamic linker look up the

Computer Science from the Bottom Up

271

memory address of that symbol and re-write the code to load that
address.

A fairly straight forward enhancement would be to set aside space in
our binary to hold the address of that symbol, and have the dynamic
linker put the address there rather than in the code directly. This way
we never need to touch the code part of the binary.

The area that is set aside for these addresses is called the Global
Offset Table, or GOT. The GOT lives in a section of the ELF file called
.got .

Computer Science from the Bottom Up

272

PROCESS 1

MEMORY
PHYSICAL

GOT/PLT

GOT/PLT

LIBRARY CODE

LIBRARY CODE

SHARED VARIABLE

VIRTUAL ADDRESSES

PROCESS 2

Figure 3.1.1 Memory access via the GOT

The GOT is private to each process, and the process must have write
permissions to it. Conversely the library code is shared and the
process should have only read and execute permissions on the code;
it would be a serious security breach if the process could modify
code.

Computer Science from the Bottom Up

273

3.1.1 The GOT in action

Computer Science from the Bottom Up

274

1 $ cat got.c
extern int i;

void test(void)
5 {

i = 100;
}

$ gcc -nostdlib -shared -o got.so ./got.c
10

$ objdump --disassemble ./got.so

./got.so: file format elf64-ia64-little

15 Disassembly of section .text:

0000000000000410 <test>:
410: 0d 10 00 18 00 21 [MFI] mov r2=r12
416: 00 00 00 02 00 c0 nop.f 0x0

20 41c: 81 09 00 90 addl r14=24,r1;;
420: 0d 78 00 1c 18 10 [MFI] ld8 r15=[r14]
426: 00 00 00 02 00 c0 nop.f 0x0
42c: 41 06 00 90 mov r14=100;;
430: 11 00 38 1e 90 11 [MIB] st4 [r15]=r14

25 436: c0 00 08 00 42 80 mov r12=r2
43c: 08 00 84 00 br.ret.sptk.many b0;;

$ readelf --sections ./got.so
There are 17 section headers, starting at offset 0x640:

30

Computer Science from the Bottom Up

275

Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
[0] NULL 0000000000000000 00000000

35 0000000000000000 0000000000000000 0 0 0
[1] .hash HASH 0000000000000120 00000120

00000000000000a0 0000000000000004 A 2 0 8
[2] .dynsym DYNSYM 00000000000001c0 000001c0

00000000000001f8 0000000000000018 A 3 e 8
40 [3] .dynstr STRTAB 00000000000003b8 000003b8

000000000000003f 0000000000000000 A 0 0 1
[4] .rela.dyn RELA 00000000000003f8 000003f8

0000000000000018 0000000000000018 A 2 0 8
[5] .text PROGBITS 0000000000000410 00000410

45 0000000000000030 0000000000000000 AX 0 0 16
[6] .IA_64.unwind_inf PROGBITS 0000000000000440 00000440

0000000000000018 0000000000000000 A 0 0 8
[7] .IA_64.unwind IA_64_UNWIND 0000000000000458 00000458

0000000000000018 0000000000000000 AL 5 5 8
50 [8] .data PROGBITS 0000000000010470 00000470

0000000000000000 0000000000000000 WA 0 0 1
[9] .dynamic DYNAMIC 0000000000010470 00000470

0000000000000100 0000000000000010 WA 3 0 8
[10] .got PROGBITS 0000000000010570 00000570

55 0000000000000020 0000000000000000 WAp 0 0 8
[11] .sbss NOBITS 0000000000010590 00000590

0000000000000000 0000000000000000 W 0 0 1
[12] .bss NOBITS 0000000000010590 00000590

0000000000000000 0000000000000000 WA 0 0 1
60 [13] .comment PROGBITS 0000000000000000 00000590

Computer Science from the Bottom Up

276

0000000000000026 0000000000000000 0 0 1
[14] .shstrtab STRTAB 0000000000000000 000005b6

000000000000008a 0000000000000000 0 0 1
[15] .symtab SYMTAB 0000000000000000 00000a80

65 0000000000000258 0000000000000018 16 12 8
[16] .strtab STRTAB 0000000000000000 00000cd8

0000000000000045 0000000000000000 0 0 1
Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)
70 I (info), L (link order), G (group), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Example 3.1.1.1 Using the GOT

Above we create a simple shared library which refers to an external
symbol. We do not know the address of this symbol at compile time,
so we leave it for the dynamic linker to fix up at runtime.

But we want our code to remain sharable, in case other processes
want to use our code as well.

The disassembly reveals just how we do this with the .got . On IA64
(the architecture which the library was compiled for) the register r1
is known as the global pointer and always points to where the .got
section is loaded into memory.

If we have a look at the readelf output we can see that the .got
section starts 0x10570 bytes past where library was loaded into
memory. Thus if the library were to be loaded into memory at address
0x6000000000000000 the .got would be at 0x6000000000010570,
and register r1 would always point to this address.

Working backwards through the disassembly, we can see that we
store the value 100 into the memory address held in register r15 . If
we look back we can see that register 15 holds the value of the
memory address stored in register 14. Going back one more step, we
see we load this address is found by adding a small number to
register 1. The GOT is simply a big long list of entries, one for each
external variable. This means that the GOT entry for the external
variable i is stored 24 bytes (that is 3 64 bit addresses).

Computer Science from the Bottom Up

277

1 $ readelf --relocs ./got.so

Relocation section '.rela.dyn' at offset 0x3f8 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

5 000000010588 000f00000027 R_IA64_DIR64LSB 0000000000000000 i + 0

Example 3.1.1.2 Relocations against the GOT

We can also check out the relocation for this entry too. The relocation
says "replace the value at offset 10588 with the memory location that
symbol i is stored at".

We know that the .got starts at offset 0x10570 from the previous
output. We have also seen how the code loads an address 0x18 (24 in
decimal) past this, giving us an address of 0x10570 + 0x18 =
0x10588 ... the address which the relocation is for!

So before the program begins, the dynamic linker will have fixed up
the relocation to ensure that the value of the memory at offset
0x10588 is the address of the global variable i !

4 Libraries
4.1 The Procedure Lookup Table
Libraries may contain many functions, and a program may end up
including many libraries to get its work done. A program may only
use one or two functions from each library of the many available, and
depending on the run-time path through the code may use some
functions and not others.

As we have seen, the process of dynamic linking is a fairly
computationally intensive one, since it involves looking up and
searching through many tables. Anything that can be done to reduce
the overheads will increase performance.

The Procedure Lookup Table (PLT) facilitates what is called lazy
binding in programs. Binding is synonymous with the fix-up process
described above for variables located in the GOT. When an entry has
been "fixed-up" it is said to be "bound" to its real address.

Computer Science from the Bottom Up

278

As we mentioned, sometimes a program will include a function from a
library but never actually call that function, depending on user input.
The process of binding this function is quite intensive, involving
loading code, searching through tables and writing memory. To go
through the process of binding a function that is not used is simply a
waste of time.

Lazy binding defers this expense until the actual function is called by
using a PLT.

Each library function has an entry in the PLT, which initially points to
some special dummy code. When the program calls the function, it
actually calls the PLT entry (in the same was as variables are
referenced through the GOT).

This dummy function will load a few parameters that need to be
passed to the dynamic linker for it to resolve the function and then
call into a special lookup function of the dynamic linker. The dynamic
linker finds the real address of the function, and writes that location
into the calling binary over the top of the dummy function call.

Thus, the next time the function is called the address can be loaded
without having to go back into the dynamic loader again. If a function
is never called, then the PLT entry will never be modified but there
will be no runtime overhead.

4.1.1 The PLT in action
Things start to get a bit hairy here! If nothing else, you should begin
to appreciate that there is a fair bit of work in resolving a dynamic
symbol!

Let us consider the simple "hello World" application. This will only
make one library call to printf to output the string to the user.

Computer Science from the Bottom Up

279

1
$ cat hello.c

#include <stdio.h>

5 int main(void)
{

printf("Hello, World!\n");
return 0;

}
10

$ gcc -o hello hello.c

$ readelf --relocs ./hello

15 Relocation section '.rela.dyn' at offset 0x3f0 contains 2 entries:
Offset Info Type Sym. Value Sym. Name + Addend

6000000000000ed8 000700000047 R_IA64_FPTR64LSB 0000000000000000 _Jv_RegisterClasses + 0
6000000000000ee0 000900000047 R_IA64_FPTR64LSB 0000000000000000 __gmon_start__ + 0

20 Relocation section '.rela.IA_64.pltoff' at offset 0x420 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

6000000000000f10 000200000081 R_IA64_IPLTLSB 0000000000000000 printf + 0
6000000000000f20 000800000081 R_IA64_IPLTLSB 0000000000000000 __libc_start_main + 0
6000000000000f30 000900000081 R_IA64_IPLTLSB 0000000000000000 __gmon_start__ + 0

Example 4.1.1.1 Hello World PLT example

We can see above that we have a R_IA64_IPLTLSB relocation for our
printf symbol. This is saying "put the address of symbol printf into

memory address 0x6000000000000f10". We have to start digging
deeper to find the exact procedure that gets us the function.

Below we have a look at the disassembly of the main() function of the
program.

Computer Science from the Bottom Up

280

1
4000000000000790 <main>:

4000000000000790: 00 08 15 08 80 05 [MII] alloc r33=ar.pfs,5,4,0
4000000000000796: 20 02 30 00 42 60 mov r34=r12

5 400000000000079c: 04 08 00 84 mov r35=r1
40000000000007a0: 01 00 00 00 01 00 [MII] nop.m 0x0
40000000000007a6: 00 02 00 62 00 c0 mov r32=b0
40000000000007ac: 81 0c 00 90 addl r14=72,r1;;
40000000000007b0: 1c 20 01 1c 18 10 [MFB] ld8 r36=[r14]

10 40000000000007b6: 00 00 00 02 00 00 nop.f 0x0
40000000000007bc: 78 fd ff 58 br.call.sptk.many b0=4000000000000520 <_init+0xb0>
40000000000007c0: 02 08 00 46 00 21 [MII] mov r1=r35
40000000000007c6: e0 00 00 00 42 00 mov r14=r0;;
40000000000007cc: 01 70 00 84 mov r8=r14

15 40000000000007d0: 00 00 00 00 01 00 [MII] nop.m 0x0
40000000000007d6: 00 08 01 55 00 00 mov.i ar.pfs=r33
40000000000007dc: 00 0a 00 07 mov b0=r32
40000000000007e0: 1d 60 00 44 00 21 [MFB] mov r12=r34
40000000000007e6: 00 00 00 02 00 80 nop.f 0x0

20 40000000000007ec: 08 00 84 00 br.ret.sptk.many b0;;

Example 4.1.1.2 Hello world main()

The call to 0x4000000000000520 must be us calling the printf
function. We can find out where this is by looking at the sections with
readelf .

Computer Science from the Bottom Up

281

1
$ readelf --sections ./hello

There are 40 section headers, starting at offset 0x25c0:

5 Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0
10 ...

[11] .plt PROGBITS 40000000000004c0 000004c0
00000000000000c0 0000000000000000 AX 0 0 32

[12] .text PROGBITS 4000000000000580 00000580
00000000000004a0 0000000000000000 AX 0 0 32

15 [13] .fini PROGBITS 4000000000000a20 00000a20
0000000000000040 0000000000000000 AX 0 0 16

[14] .rodata PROGBITS 4000000000000a60 00000a60
000000000000000f 0000000000000000 A 0 0 8

[15] .opd PROGBITS 4000000000000a70 00000a70
20 0000000000000070 0000000000000000 A 0 0 16

[16] .IA_64.unwind_inf PROGBITS 4000000000000ae0 00000ae0
00000000000000f0 0000000000000000 A 0 0 8

[17] .IA_64.unwind IA_64_UNWIND 4000000000000bd0 00000bd0
00000000000000c0 0000000000000000 AL 12 c 8

25 [18] .init_array INIT_ARRAY 6000000000000c90 00000c90
0000000000000018 0000000000000000 WA 0 0 8

[19] .fini_array FINI_ARRAY 6000000000000ca8 00000ca8
0000000000000008 0000000000000000 WA 0 0 8

[20] .data PROGBITS 6000000000000cb0 00000cb0
30 0000000000000004 0000000000000000 WA 0 0 4

Computer Science from the Bottom Up

282

[21] .dynamic DYNAMIC 6000000000000cb8 00000cb8
00000000000001e0 0000000000000010 WA 5 0 8

[22] .ctors PROGBITS 6000000000000e98 00000e98
0000000000000010 0000000000000000 WA 0 0 8

35 [23] .dtors PROGBITS 6000000000000ea8 00000ea8
0000000000000010 0000000000000000 WA 0 0 8

[24] .jcr PROGBITS 6000000000000eb8 00000eb8
0000000000000008 0000000000000000 WA 0 0 8

[25] .got PROGBITS 6000000000000ec0 00000ec0
40 0000000000000050 0000000000000000 WAp 0 0 8

[26] .IA_64.pltoff PROGBITS 6000000000000f10 00000f10
0000000000000030 0000000000000000 WAp 0 0 16

[27] .sdata PROGBITS 6000000000000f40 00000f40
0000000000000010 0000000000000000 WAp 0 0 8

45 [28] .sbss NOBITS 6000000000000f50 00000f50
0000000000000008 0000000000000000 WA 0 0 8

[29] .bss NOBITS 6000000000000f58 00000f50
0000000000000008 0000000000000000 WA 0 0 8

[30] .comment PROGBITS 0000000000000000 00000f50
50 00000000000000b9 0000000000000000 0 0 1

[31] .debug_aranges PROGBITS 0000000000000000 00001010
0000000000000090 0000000000000000 0 0 16

[32] .debug_pubnames PROGBITS 0000000000000000 000010a0
0000000000000025 0000000000000000 0 0 1

55 [33] .debug_info PROGBITS 0000000000000000 000010c5
00000000000009c4 0000000000000000 0 0 1

[34] .debug_abbrev PROGBITS 0000000000000000 00001a89
0000000000000124 0000000000000000 0 0 1

[35] .debug_line PROGBITS 0000000000000000 00001bad
60 00000000000001fe 0000000000000000 0 0 1

Computer Science from the Bottom Up

283

[36] .debug_str PROGBITS 0000000000000000 00001dab
00000000000006a1 0000000000000001 MS 0 0 1

[37] .shstrtab STRTAB 0000000000000000 0000244c
000000000000016f 0000000000000000 0 0 1

65 [38] .symtab SYMTAB 0000000000000000 00002fc0
0000000000000b58 0000000000000018 39 60 8

[39] .strtab STRTAB 0000000000000000 00003b18
0000000000000479 0000000000000000 0 0 1

Key to Flags:
70 W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

Example 4.1.1.3 Hello world sections

That address is (unsurprisingly) in the .plt section. So there we
have our call into the PLT! But we're not satisfied with that, let's keep
digging further to see what we can uncover. We disassemble the .plt
section to see what that call actually does.

Computer Science from the Bottom Up

284

1
40000000000004c0 <.plt>:

40000000000004c0: 0b 10 00 1c 00 21 [MMI] mov r2=r14;;
40000000000004c6: e0 00 08 00 48 00 addl r14=0,r2

5 40000000000004cc: 00 00 04 00 nop.i 0x0;;
40000000000004d0: 0b 80 20 1c 18 14 [MMI] ld8 r16=[r14],8;;
40000000000004d6: 10 41 38 30 28 00 ld8 r17=[r14],8
40000000000004dc: 00 00 04 00 nop.i 0x0;;
40000000000004e0: 11 08 00 1c 18 10 [MIB] ld8 r1=[r14]

10 40000000000004e6: 60 88 04 80 03 00 mov b6=r17
40000000000004ec: 60 00 80 00 br.few b6;;
40000000000004f0: 11 78 00 00 00 24 [MIB] mov r15=0
40000000000004f6: 00 00 00 02 00 00 nop.i 0x0
40000000000004fc: d0 ff ff 48 br.few 40000000000004c0 <_init+0x50>;;

15 4000000000000500: 11 78 04 00 00 24 [MIB] mov r15=1
4000000000000506: 00 00 00 02 00 00 nop.i 0x0
400000000000050c: c0 ff ff 48 br.few 40000000000004c0 <_init+0x50>;;
4000000000000510: 11 78 08 00 00 24 [MIB] mov r15=2
4000000000000516: 00 00 00 02 00 00 nop.i 0x0

20 400000000000051c: b0 ff ff 48 br.few 40000000000004c0 <_init+0x50>;;
4000000000000520: 0b 78 40 03 00 24 [MMI] addl r15=80,r1;;
4000000000000526: 00 41 3c 70 29 c0 ld8.acq r16=[r15],8
400000000000052c: 01 08 00 84 mov r14=r1;;
4000000000000530: 11 08 00 1e 18 10 [MIB] ld8 r1=[r15]

25 4000000000000536: 60 80 04 80 03 00 mov b6=r16
400000000000053c: 60 00 80 00 br.few b6;;
4000000000000540: 0b 78 80 03 00 24 [MMI] addl r15=96,r1;;
4000000000000546: 00 41 3c 70 29 c0 ld8.acq r16=[r15],8
400000000000054c: 01 08 00 84 mov r14=r1;;

30 4000000000000550: 11 08 00 1e 18 10 [MIB] ld8 r1=[r15]

Computer Science from the Bottom Up

285

4000000000000556: 60 80 04 80 03 00 mov b6=r16
400000000000055c: 60 00 80 00 br.few b6;;
4000000000000560: 0b 78 c0 03 00 24 [MMI] addl r15=112,r1;;
4000000000000566: 00 41 3c 70 29 c0 ld8.acq r16=[r15],8

35 400000000000056c: 01 08 00 84 mov r14=r1;;
4000000000000570: 11 08 00 1e 18 10 [MIB] ld8 r1=[r15]
4000000000000576: 60 80 04 80 03 00 mov b6=r16
400000000000057c: 60 00 80 00 br.few b6;;

Example 4.1.1.4 Hello world PLT

Let us step through the instructions. Firstly, we add 80 to the value in
r1, storing it in r15. We know from before that r1 will be pointing to
the GOT, so this is saying "store in r15 80 bytes into the GOT". The
next thing we do is load into r16 the value stored in this location in
the GOT, and post increment the value in r15 by 8 bytes. We then
store r1 (the location of the GOT) in r14 and set r1 to be the value in
the next 8 bytes after r15. Then we branch to r16.

In the previous chapter we discussed how functions are actually
called through a function descriptor which contains the function
address and the address of the global pointer. Here we can see that
the PLT entry is first loading the function value, moving on 8 bytes to
the second part of the function descriptor and then loading that value
into the op register before calling the function.

But what exactly are we loading? We know that r1 will be pointing to
the GOT. We go 80 bytes past the got (0x50)

Computer Science from the Bottom Up

286

1
$ objdump --disassemble-all ./hello

Disassembly of section .got:

5 6000000000000ec0 <.got>:
...

6000000000000ee8: 80 0a 00 00 00 00 data8 0x02a000000
6000000000000eee: 00 40 90 0a dep r0=r0,r0,63,1
6000000000000ef2: 00 00 00 00 00 40 [MIB] (p20) break.m 0x1

10 6000000000000ef8: a0 0a 00 00 00 00 data8 0x02a810000
6000000000000efe: 00 40 50 0f br.few 6000000000000ef0 <_GLOBAL_OFFSET_TABLE_+0x30>
6000000000000f02: 00 00 00 00 00 60 [MIB] (p58) break.m 0x1
6000000000000f08: 60 0a 00 00 00 00 data8 0x029818000
6000000000000f0e: 00 40 90 06 br.few 6000000000000f00 <_GLOBAL_OFFSET_TABLE_+0x40>

15 Disassembly of section .IA_64.pltoff:

6000000000000f10 <.IA_64.pltoff>:
6000000000000f10: f0 04 00 00 00 00 [MIB] (p39) break.m 0x0
6000000000000f16: 00 40 c0 0e 00 00 data8 0x03b010000

20 6000000000000f1c: 00 00 00 60 data8 0xc000000000
6000000000000f20: 00 05 00 00 00 00 [MII] (p40) break.m 0x0
6000000000000f26: 00 40 c0 0e 00 00 data8 0x03b010000
6000000000000f2c: 00 00 00 60 data8 0xc000000000
6000000000000f30: 10 05 00 00 00 00 [MIB] (p40) break.m 0x0

25 6000000000000f36: 00 40 c0 0e 00 00 data8 0x03b010000
6000000000000f3c: 00 00 00 60 data8 0xc000000000

Example 4.1.1.5 Hello world GOT

0x6000000000000ec0 + 0x50 = 0x6000000000000f10, or the
.IA_64.pltoff section. Now we're starting to get somewhere!

We can decode the objdump output so we can see exactly what is

Computer Science from the Bottom Up

287

being loaded here. Swapping the byte order of the first 8 bytes f0 04
00 00 00 00 00 40 we end up with 0x4000000000004f0 . Now that
address looks familiar! Looking back up at the assemble output of the
PLT we see that address.

The code at 0x4000000000004f0 firstly puts a zero value into r15, and
then branches back to 0x40000000000004c0 . Wait a minute! That's the
start of our PLT section.

We can trace this code through too. Firstly we save the value of the
global pointer (r2) then we load three 8 byte values into r16 , r17
and finally, r1 . We then branch to the address in r17 . What we are
seeing here is the actual call into the dynamic linker!

We need to delve into the ABI to understand exactly what is being
loaded at this point. The ABI says two things -- dynamically linked
programs must have a special section (called the
DT_IA_64_PLT_RESERVE section) that can hold three 8 byte values.

There is a pointer where this reserved area in the dynamic segment
of the binary.

Computer Science from the Bottom Up

288

1

Dynamic segment at offset 0xcb8 contains 25 entries:
Tag Type Name/Value

5 0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]
0x000000000000000c (INIT) 0x4000000000000470
0x000000000000000d (FINI) 0x4000000000000a20
0x0000000000000019 (INIT_ARRAY) 0x6000000000000c90
0x000000000000001b (INIT_ARRAYSZ) 24 (bytes)

10 0x000000000000001a (FINI_ARRAY) 0x6000000000000ca8
0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)
0x0000000000000004 (HASH) 0x4000000000000200
0x0000000000000005 (STRTAB) 0x4000000000000330
0x0000000000000006 (SYMTAB) 0x4000000000000240

15 0x000000000000000a (STRSZ) 138 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) 0x0
0x0000000070000000 (IA_64_PLT_RESERVE) 0x6000000000000ec0 -- 0x6000000000000ed8
0x0000000000000003 (PLTGOT) 0x6000000000000ec0

20 0x0000000000000002 (PLTRELSZ) 72 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JMPREL) 0x4000000000000420
0x0000000000000007 (RELA) 0x40000000000003f0
0x0000000000000008 (RELASZ) 48 (bytes)

25 0x0000000000000009 (RELAENT) 24 (bytes)
0x000000006ffffffe (VERNEED) 0x40000000000003d0
0x000000006fffffff (VERNEEDNUM) 1
0x000000006ffffff0 (VERSYM) 0x40000000000003ba
0x0000000000000000 (NULL) 0x0

Example 4.1.1.6 Dynamic Segment

Computer Science from the Bottom Up

289

Do you notice anything about it? Its the same value as the GOT. This
means that the first three 8 byte entries in the GOT are actually the
reserved area; thus will always be pointed to by the global pointer.

When the dynamic linker starts it is its duty to fill these values in. The
ABI says that the first value will be filled in by the dynamic linker
giving this module a unique ID. The second value is the global pointer
value for the dynamic linker, and the third value is the address of the
function that finds and fixes up the symbol.

Computer Science from the Bottom Up

290

1
/* Set up the loaded object described by L so its unrelocated PLT

entries will jump to the on-demand fixup code in dl-runtime.c. */

5 static inline int __attribute__ ((unused, always_inline))
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{

extern void _dl_runtime_resolve (void);
extern void _dl_runtime_profile (void);

10
if (lazy)

{
register Elf64_Addr gp __asm__ ("gp");
Elf64_Addr *reserve, doit;

15
/*
* Careful with the typecast here or it will try to add l-l_addr
* pointer elements
*/

20 reserve = ((Elf64_Addr *)
(l->l_info[DT_IA_64 (PLT_RESERVE)]->d_un.d_ptr + l->l_addr));

/* Identify this shared object. */
reserve[0] = (Elf64_Addr) l;

25 /* This function will be called to perform the relocation. */
if (!profile)

doit = (Elf64_Addr) ((struct fdesc *) &_dl_runtime_resolve)->ip;
else

{
30 if (GLRO(dl_profile) != NULL

Computer Science from the Bottom Up

291

&& _dl_name_match_p (GLRO(dl_profile), l))
{

/* This is the object we are looking for. Say that we really
want profiling and the timers are started. */

35 GL(dl_profile_map) = l;
}

doit = (Elf64_Addr) ((struct fdesc *) &_dl_runtime_profile)->ip;
}

40 reserve[1] = doit;
reserve[2] = gp;

}

return lazy;
45 }

Example 4.1.1.7 Code in the dynamic linker for setting up
special values (from libc sysdeps/ia64/dl-machine.h)

We can see how this gets setup by the dynamic linker by looking at
the function that does this for the binary. The reserve variable is set
from the PLT_RESERVE section pointer in the binary. The unique
value (put into reserve[0]) is the address of the link map for this
object. Link maps are the internal representation within glibc for
shared objects. We then put in the address of _dl_runtime_resolve to
the second value (assuming we are not using profiling). reserve[2] is
finally set to gp, which has been found from r2 with the __asm__ call.

Looking back at the ABI, we see that the relocation index for the
entry must be placed in r15 and the unique identifier must be passed
in r16 .

r15 has previously been set in the stub code, before we jumped back
to the start of the PLT. Have a look down the entries, and notice how
each PLT entry loads r15 with an incremented value? It should come
as no surprise if you look at the relocations the printf relocation is
number zero.

r16 we load up from the values that have been initialised by the

Computer Science from the Bottom Up

292

dynamic linker, as previously discussed. Once that is ready, we can
load the function address and global pointer and branch into the
function.

What happens at this point is the dynamic linker function
_dl_runtime_resolve is run. It finds the relocation; remember how the

relocation specified the name of the symbol? It uses this name to find
the right function; this might involve loading the library from disk if it
is not already in memory, or otherwise sharing the code.

The relocation record provides the dynamic linker with the address it
needs to "fix up"; remember it was in the GOT and loaded by the
initial PLT stub? This means that after the first time the function is
called, the second time it is loaded it will get the direct address of the
function; short circuiting the dynamic linker.

4.1.2 Summary
You've seen the exact mechanism behind the PLT, and consequently
the inner workings of the dynamic linker. The important points to
remember are

• Library calls in your program actually call a stub of code in the
PLT of the binary.

• That stub code loads an address and jumps to it.

• Initially, that address points to a function in the dynamic linker
which is capable of looking up the "real" function, given the
information in the relocation entry for that function.

• The dynamic linker re-writes the address that the stub code
reads, so that the next time the function is called it will go
straight to the right address.

5 Working with libraries and the
linker
The presence of the dynamic linker provides both some advantages
we can utilise and some extra issues that need to be resolved to get a
functional system.

Computer Science from the Bottom Up

293

5.1 Library versions
One potential issue is different versions of libraries. With only static
libraries there is much less potential for problems, as all library code
is built directly into the binary of the application. If you want to use a
new version of the library you need to recompile it into a new binary,
replacing the old one.

This is obviously fairly impractical for common libraries, the most
common of course being libc which is included in most all
applications. If it were only available as a static library any change
would require every single application in the system be rebuilt.

However, changes in the way the dynamic library work could cause
multiple problems. In the best case, the modifications are completely
compatible and nothing externally visible is changed. On the other
hand the changes might cause the application to crash; for example if
a function that used to take an int changes to take an int * . Worse,
the new library version could have changed semantics and suddenly
start silently returning different, possibly wrong values. This can be a
very nasty bug to try and track down; when an application crashes
you can use a debugger to isolate where the error occurs whilst data
corruption or modification may only show up in seemingly unrelated
parts of the application.

The dynamic linker requires a way to determine the version of
libraries within the system so that newer revisions can be identified.
There are a number of schemes a modern dynamic linker can use to
find the right versions of libraries.

5.1.1 sonames

Using sonames we can add some extra information to a library to help
identify versions.

As we have seen previously, an application lists the libraries it
requires in DT_NEEDED fields in the dynamic section of the binary. The
actual library is held in a file on disc, usually in /lib for core system
libraries or /usr/lib for optional libraries.

To allow multiple versions of the library to exist on disk, they
obviously require differing file names. The soname scheme uses a
combination of names and file system links to build a hierarchy of
libraries.

This is done by introducing the concept of major and minor library
revisions. A minor revision is one wholly backwards compatible with a
previous version of the library; this usually consists of only bug fixes.

Computer Science from the Bottom Up

294

A major revision is therefore any revision that is not compatible; e.g.
changes the inputs to functions or the way a function behaves.

As each library revision, major or minor, will need to be kept in a
separate file on disk, this forms the basis of the library hierarchy. The
library name is by convention libNAME.so.MAJOR.MINOR 1. However, if
every application were directly linked against this file we would have
the same issue as with a static library; every time a minor change
happened we would need to rebuild the application to point to the
new library.

What we really want to refer to is the major number of the library. If
this changes, we reasonably are required to recompile our
application, since we need to make sure our program is still
compatible with the new library.

Thus the soname is the libNAME.so.MAJOR . The soname should be set in
the DT_SONAME field of the dynamic section in a shared library; the
library author can specify this version when they build the library.

Thus each minor version library file on disc can specify the same
major version number in its DT_SONAME field, allowing the dynamic
linker to know that this particular library file implements a particular
major revision of the library API and ABI.

To keep track of this, an application called ldconfig is commonly run
to create symbolic links named for the major version to the latest
minor version on the system. ldconfig works by running through all
the libraries that implement a particular major revision number, and
then picks out the one with the highest minor revision. It then creates
a symbolic link from libNAME.so.MAJOR to the actual library file on
disc, i.e. libNAME.so.MAJOR.MINOR .

XXX : talk about libtool versions

The final piece of the hierarchy is the compile name for the library.
When you compile your program, to link against a library you use the
-lNAME flag, which goes off searching for the libNAME.so file in the

library search path. Notice however, we have not specified any
version number; we just want to link against the latest library on the
system. It is up to the installation procedure for the library to create
the symbolic link between the compile libNAME.so name and the
latest library code on the system. Usually this is handled by your
package management system (dpkg or rpm). This is not an automated
process because it is possible that the latest library on the system
may not be the one you wish to always compile against; for example if

1. You can optionally have a release as a final identifier after the minor
number. Generally this is enough to distinguish all the various versions
library.

Computer Science from the Bottom Up

295

the latest installed library were a development version not
appropriate for general use.

The general process is illustrated below.

Major Revision 2

libfoo.so.2

libfoo.so.2.0

Minor Revision 0

Major Revision 1

libfoo.so.1

libfoo.so.1.2

Minor Revision 2

Major Revision 1

libfoo.so.1

libfoo.so.1.1

Minor Revision 1
DT_NEEDED

libfoo.so.1

/usr/lib/libfoo.so.2

/usr/lib

/usr/lib/libfoo.so

$ gcc -o test test.c -lfoo

N
ew

er
 r

ev
is

io
ns

File Name

soname

Old Application

New Build

Figure 5.1.1.1 sonames

5.1.1.1 How the dynamic linker looks up libraries

When the application starts, the dynamic linker looks at the
DT_NEEDED field to find the required libraries. This field contains the
soname of the library, so the next step is for the dynamic linker to

walk through all the libraries in its search path looking for it.

This process conceptually involves two steps. Firstly the dynamic

Computer Science from the Bottom Up

296

linker needs to search through all the libraries to find those that
implement the given soname . Secondly the file names for the minor
revisions need to be compared to find the latest version, which is then
ready to be loaded.

We mentioned previously that there is a symbolic link setup by
ldconfig between the library soname and the latest minor revision.
Thus the dynamic linker should need to only follow that link to find
the correct file to load, rather than having to open all possible
libraries and decide which one to go with each time the application is
required.

Since file system access is so slow, ldconfig also creates a cache of
libraries installed in the system. This cache is simply a list of soname s
of libraries available to the dynamic linker and a pointer to the major
version link on disk, saving the dynamic linker having to read entire
directories full of files to locate the correct link. You can analyse this
with /sbin/ldconfig -p; it actually lives in the file /etc/
ldconfig.so.cache . If the library is not found in the cache the dynamic
linker will fall back to the slower option of walking the file system,
thus it is important to re-run ldconfig when new libraries are
installed.

5.2 Finding symbols
We've already discussed how the dynamic linker gets the address of a
library function and puts it in the PLT for the program to use. But so
far we haven't discussed just how the dynamic linker finds the
address of the function. The whole process is called binding, because
the symbol name is bound to the address it represents.

The dynamic linker has a few pieces of information; firstly the symbol
that it is searching for, and secondly a list of libraries that that symbol
might be in, as defined by the DT_NEEDED fields in the binary.

Each shared object library has a section, marked SHT_DYNSYM and
called .dynsym which is the minimal set of symbols required for
dynamic linking -- that is any symbol in the library that may be called
by an external program.

5.2.1 Dynamic Symbol Table
In fact, there are three sections that all play a part in describing the
dynamic symbols. Firstly, let us look at the definition of a symbol from
the ELF specification

Computer Science from the Bottom Up

297

1 typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;

5 unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

Example 5.2.1.1 Symbol definition from ELF

Table 5.2.1.1 ELF symbol fields
Field Value
st_name An index to the string table

st_value Value - in a relocatable shared object this holds the offset
from the section of index given in st_shndx

st_size Any associated size of the symbol

st_info
Information on the binding of the symbol (described
below) and what type of symbol this is (a function, object,
etc).

st_other Not currently used
st_shndx Index of the section this symbol resides in (see st_value

As you can see, the actual string of the symbol name is held in a
separate section (.dynstr ; the entry in the .dynsym section only holds
an index into the string section. This creates some level of overhead
for the dynamic linker; the dynamic linker must read all of the symbol
entries in the .dynsym section and then follow the index pointer to
find the symbol name for comparison.

To speed this process up, a third section called .hash is introduced,
containing a hash table of symbol names to symbol table entries. This
hash table is pre-computed when the library is built and allows the
dynamic linker to find the symbol entry much faster, generally with
only one or two lookups.

5.2.2 Symbol Binding
Whilst we usually say the process of finding the address of a symbol

Computer Science from the Bottom Up

298

refers is the process of binding that symbol, the symbol binding has a
separate meaning.

The binding of a symbol dictates its external visibility during the
dynamic linking process. A local symbol is not visible outside the
object file it is defined in. A global symbol is visible to other object
files, and can satisfy undefined references in other objects.

A weak reference is a special type of lower priority global reference.
This means it is designed to be overridden, as we will see shortly.

Below we have an example C program which we analyse to inspect
the symbol bindings.

Computer Science from the Bottom Up

299

1 $ cat test.c
static int static_variable;

extern int extern_variable;
5

int external_function(void);

int function(void)
{

10 return external_function();
}

static int static_function(void)
{

15 return 10;
}

#pragma weak weak_function
int weak_function(void)

20 {
return 10;

}

$ gcc -c test.c
25 $ objdump --syms test.o

test.o: file format elf32-powerpc

SYMBOL TABLE:
30 00000000 l df *ABS* 00000000 test.c

Computer Science from the Bottom Up

300

00000000 l d .text 00000000 .text
00000000 l d .data 00000000 .data
00000000 l d .bss 00000000 .bss
00000038 l F .text 00000024 static_function

35 00000000 l d .sbss 00000000 .sbss
00000000 l O .sbss 00000004 static_variable
00000000 l d .note.GNU-stack 00000000 .note.GNU-stack
00000000 l d .comment 00000000 .comment
00000000 g F .text 00000038 function

40 00000000 *UND* 00000000 external_function
0000005c w F .text 00000024 weak_function

$ nm test.o
U external_function

45 00000000 T function
00000038 t static_function
00000000 s static_variable
0000005c W weak_function

Example 5.2.2.1 Examples of symbol bindings

Notice the use of #pragma to define the weak symbol. A pragma is a
way of communicating extra information to the compiler; its use is not
common but occasionally is required to get the compiler to do out of
the ordinary operations.x

We inspect the symbols with two different tools; in both cases the
binding is shown in the second column; the codes should be quite
straight forward (are are documented in the tools man page).

5.2.2.1 Overriding symbols

It is often very useful for a programmer to be able to override a
symbol in a library; that is to subvert the normal symbol with a
different definition.

We mentioned that the order that libraries is searched is given by the

Computer Science from the Bottom Up

301

order of the DT_NEEDED fields within the library. However, it is possible
to insert libraries as the last libraries to be searched; this means that
any symbols within them will be found as the final reference.

This is done via an environment variable called LD_PRELOAD which
specifies libraries that the linker should load last.

Computer Science from the Bottom Up

302

1 $ cat override.c
#define _GNU_SOURCE 1
#include <stdio.h>
#include <stdlib.h>

5 #include <unistd.h>
#include <sys/types.h>
#include <dlfcn.h>

pid_t getpid(void)
10 {

pid_t (*orig_getpid)(void) = dlsym(RTLD_NEXT, "getpid");
printf("Calling GETPID\n");

return orig_getpid();
15 }

$ cat test.c
#include <stdio.h>
#include <stdlib.h>

20 #include <unistd.h>

int main(void)
{

printf("%d\n", getpid());
25 }

$ gcc -shared -fPIC -o liboverride.so override.c -ldl
$ gcc -o test test.c
$ LD_PRELOAD=./liboverride.so ./test

30 Calling GETPID

Computer Science from the Bottom Up

303

15187

Example 5.2.2.1.1 Example of LD_PRELOAD

In the above example we override the getpid function to print out a
small statement when it is called. We use the dlysm function provided
by libc with an argument telling it to continue on and find the next
symbol called getpid .

5.2.2.1.1 Weak symbols over time

The concept of the weak symbol is that the symbol is marked as a
lower priority and can be overridden by another symbol. Only if no
other implementation is found will the weak symbol be the one that it
used.

The logical extension of this for the dynamic loader is that all libraries
should be loaded, and any weak symbols in those libraries should be
ignored for normal symbols in any other library. This was indeed how
weak symbol handling was originally implemented in Linux by glibc.

However, this was actually incorrect to the letter of the Unix standard
at the time (SysVr4). The standard actually dictates that weak
symbols should only be handled by the static linker; they should
remain irrelevant to the dynamic linker (see the section on binding
order below).

At the time, the Linux implementation of making the dynamic linker
override weak symbols matched with SGI's IRIX platform, but differed
to others such as Solaris and AIX. When the developers realised this
behaviour violated the standard it was reversed, and the old
behaviour relegated to requiring a special environment flag
(LD_DYNAMIC_WEAK) be set.

5.2.2.2 Specifying binding order

We have seen how we can override a function in another library by
preloading another shared library with the same symbol defined. The
symbol that gets resolved as the final one is the last one in the order
that the dynamic loader loads the libraries.

Libraries are loaded in the order they are specified in the DT_NEEDED
flag of the binary. This in turn is decided from the order that libraries
are passed in on the command line when the object is built. When
symbols are to be located, the dynamic linker starts at the last loaded
library and works backwards until the symbol is found.

Computer Science from the Bottom Up

304

Some shared libraries, however, need a way to override this
behaviour. They need to say to the dynamic linker "look first inside
me for these symbols, rather than working backwards from the last
loaded library". Libraries can set the DT_SYMBOLIC flag in their
dynamic section header to get this behaviour (this is usually set by
passing the -Bsymbolic flag on the static linkers command line when
building the shared library).

What this flag is doing is controlling symbol visibility. The symbols in
the library can not be overridden so could be considered private to
the library that is being loaded.

However, this loses a lot of granularity since the library is either
flagged for this behaviour, or it is not. A better system would allow us
to make some symbols private and some symbols public.

5.2.2.3 Symbol Versioning

That better system comes from symbol versioning. With symbol
versioning we specify some extra input to the static linker to give it
some more information about the symbols in our shared library.

Computer Science from the Bottom Up

305

1 $ cat Makefile
all: test testsym

clean:
5 rm -f *.so test testsym

liboverride.so : override.c
$(CC) -shared -fPIC -o liboverride.so override.c

10 libtest.so : libtest.c
$(CC) -shared -fPIC -o libtest.so libtest.c

libtestsym.so : libtest.c
$(CC) -shared -fPIC -Wl,-Bsymbolic -o libtestsym.so libtest.c

15
test : test.c libtest.so liboverride.so

$(CC) -L. -ltest -o test test.c

testsym : test.c libtestsym.so liboverride.so
20 $(CC) -L. -ltestsym -o testsym test.c

$ cat libtest.c
#include <stdio.h>

25 int foo(void) {
printf("libtest foo called\n");
return 1;

}

30 int test_foo(void)

Computer Science from the Bottom Up

306

{
return foo();

}

35 $ cat override.c
#include <stdio.h>

int foo(void)
{

40 printf("override foo called\n");
return 0;

}

$ cat test.c
45 #include <stdio.h>

int main(void)
{

printf("%d\n", test_foo());
50 }

$ cat Versions
{global: test_foo; local: *; };

55 $ gcc -shared -fPIC -Wl,-version-script=Versions -o libtestver.so libtest.c

$ gcc -L. -ltestver -o testver test.c

$ LD_LIBRARY_PATH=. LD_PRELOAD=./liboverride.so ./testver
60 libtest foo called

Computer Science from the Bottom Up

307

100000574 l F .text 00000054 foo
000005c8 g F .text 00000038 test_foo

Example 5.2.2.3.1 Example of symbol versioning

In the simplest case as above, we simply state if the symbol is global
or local. Thus in the case above the foo function is most likely a
support function for test_foo ; whilst we are happy for the overall
functionality of the test_foo function to be overridden, if we do use
the shared library version it needs to have unaltered access nobody
should modify the support function.

This allows us to keep our namespace better organised. Many
libraries might want to implement something that could be named
like a common function like read or write ; however if they all did
the actual version given to the program might be completely wrong.
By specifying symbols as local only the developer can be sure that
nothing will conflict with that internal name, and conversely the name
he chose will not influence any other program.

An extension of this scheme is symbol versioning. With this you can
specify multiple versions of the same symbol in the same library. The
static linker appends some version information after the symbol name
(something like @VER) describing what version the symbol is given.

If the developer implements a function that has the same name but
possibly a binary or programatically different implementation he can
increase the version number. When new applications are built against
the shared library, they will pick up the latest version of the symbol.
However, applications built against earlier versions of the same
library will be requesting older versions (e.g. will have older @VER
strings in the symbol name they request) and thus get the original
implementation. XXX : example

Glossary
A

Application Binary Interface

A technical description of how the operating system should
interface with hardware.

Computer Science from the Bottom Up

308

See Also Application Programming Interface.

Application Programming Interface

The set of variables and functions used to communicate between
different parts of programs.

See Also Application Binary Interface.

E

Extensible Markup Language

Some reasonable definition here.

See Also Standardised Generalised Markup Language.

Standardised Generalised Markup Language

The grand daddy of all documents

See Also Extensible Markup Language.

M

MMU

The memory managment unit component of the hardware
architecture.

Mutually Exclusive

When a number of things are mutually exclusive, only one can be
valid at a time. The fact that one of the things is valid makes the
others invalid.

O

Open Source

Software distributed in source form under licenses guaranteeing
anybody rights to freely use, modify, and redistribute the code.

S

Shell

The interface used to interact with the operating system.

Computer Science from the Bottom Up

309

	Computer Science from the Bottom Up
	Ian Wienand
	Introduction
	Welcome
	Philosophy
	Why from the bottom up?
	Enabling Technologies

	Chapter 1. General Unix and Advanced C
	1 Everything is a file!
	2 Implementing abstraction
	2.1 Implementing abstraction with C
	2.2 Libraries

	3 File Descriptors
	3.1 The Shell
	3.1.1 Redirection
	3.1.2 Implementing pipe

	Chapter 2. Binary and Number Representation
	1 Binary — the basis of computing
	1.1 Binary Theory
	1.1.1 Introduction
	1.1.2 The basis of computing
	1.1.3 Bits and Bytes
	1.1.3.1 ASCII
	1.1.3.2 Parity
	1.1.3.3 16, 32 and 64 bit computers
	1.1.3.4 Kilo, Mega and Giga Bytes
	1.1.3.5 Kilo, Mega and Giga Bits
	1.1.3.6 Conversion

	1.1.4 Boolean Operations
	1.1.4.1 Not
	1.1.4.2 And
	1.1.4.3 Or
	1.1.4.4 Exclusive Or (xor)

	1.1.5 How computers use boolean operations
	1.1.6 Working with binary in C

	1.2 Hexadecimal
	1.3 Practical Implications
	1.3.1 Use of binary in code
	1.3.2 Masking and Flags
	1.3.2.1 Masking
	1.3.2.2 Flags

	2 Types and Number Representation
	2.1 C Standards
	2.1.1 GNU C

	2.2 Types
	2.2.1 64 bit
	2.2.2 Type qualifiers
	2.2.3 Standard Types
	2.2.4 Types in action

	2.3 Number Representation
	2.3.1 Negative Values
	2.3.1.1 Sign Bit
	2.3.1.2 One's Complement
	2.3.1.3 Two's Complement
	2.3.1.3.1 Sign-extension

	2.3.2 Floating Point
	2.3.2.1 Normalised Values
	2.3.2.1.1 Normalisation Tricks
	2.3.2.2 Bringing it together

	Chapter 3. Computer Architecture
	1 The CPU
	1.1 Branching
	1.2 Cycles
	1.3 Fetch, Decode, Execute, Store
	1.3.1 Looking inside a CPU
	1.3.2 Pipelining
	1.3.2.1 Branch Prediction

	1.3.3 Reordering

	1.4 CISC v RISC
	1.4.1 EPIC

	2 Memory
	2.1 Memory Hierarchy
	2.2 Cache in depth
	2.2.1 Cache Addressing

	3 Peripherals and buses
	3.1 Peripheral Bus concepts
	3.1.1 Interrupts
	3.1.1.1 Saving state
	3.1.1.2 Interrupts v traps and exceptions
	3.1.1.3 Types of interrupts
	3.1.1.4 Non-maskable interrupts

	3.1.2 IO Space

	3.2 DMA
	3.3 Other Buses
	3.3.1 USB

	4 Small to big systems
	4.1 Symmetric Multi-Processing
	4.1.1 Cache Coherency
	4.1.1.1 Cache exclusivity in SMP systems

	4.1.2 Hyperthreading
	4.1.3 Multi Core

	4.2 Clusters
	4.3 Non-Uniform Memory Access
	4.3.1 NUMA Machine Layout
	4.3.2 Cache Coherency
	4.3.3 NUMA Applications

	4.4 Memory ordering, locking and atomic operations
	4.4.1 Processors and memory models
	4.4.2 Locking
	4.4.2.1 Locking difficulties
	4.4.2.2 Locking strategies

	4.4.3 Atomic Operations

	Chapter 4. The Operating System
	1 The role of the operating system
	1.1 Abstraction of hardware
	1.2 Multitasking
	1.3 Standardised Interfaces
	1.4 Security
	1.5 Performance

	2 Operating System Organisation
	2.1 The Kernel
	2.1.1 Monolithic v Microkernels
	2.1.1.1 Modules

	2.1.2 Virtualisation
	2.1.2.1 Covert Channels

	2.2 Userspace

	3 System Calls
	3.1 Overview
	3.1.1 System call numbers
	3.1.2 Arguments
	3.1.3 The trap
	3.1.4 libc

	3.2 Analysing a system call
	3.2.1 PowerPC
	3.2.2 x86 system calls

	4 Privileges
	4.1 Hardware
	4.1.1 Privilege Levels
	4.1.1.1 386 protection model
	4.1.1.2 Raising Privilege
	4.1.1.3 Fast System Calls

	4.2 Other ways of communicating with the kernel
	4.2.1 ioctl

	4.3 File Systems

	Chapter 5. The Process
	1 What is a process?
	2 Elements of a process
	2.1 Process ID
	2.2 Memory
	2.2.1 Code and Data
	2.2.2 The Stack
	2.2.3 The Heap
	2.2.4 Memory Layout

	2.3 File Descriptors
	2.4 Registers
	2.5 Kernel State
	2.5.1 Process State
	2.5.2 Priority
	2.5.3 Statistics

	3 Process Hierarchy
	4 Fork and Exec
	4.1 Fork
	4.2 Exec
	4.3 How Linux actually handles fork and exec
	4.3.1 clone
	4.3.1.1 Threads
	4.3.1.2 Copy on write

	4.4 The init process
	4.4.1 Zombie example

	5 Context Switching
	6 Scheduling
	6.1 Preemptive v co-operative scheduling
	6.2 Realtime
	6.3 Nice value
	6.4 A brief look at the Linux Scheduler

	7 The Shell
	8 Signals
	8.1 Example

	Chapter 6. Virtual Memory
	1 What Virtual Memory isn't
	2 What virtual memory is
	2.1 64 bit computing
	2.1.1 Canonical Addresses

	2.2 Using the address space

	3 Pages
	4 Physical Memory
	5 Pages + Frames = Page Tables
	6 Virtual Addresses
	6.1 Page
	6.2 Offset
	6.3 Virtual Address Translation

	7 Consequences of virtual addresses, pages and page tables
	7.1 Individual address spaces
	7.2 Protection
	7.3 Swap
	7.3.1 mmap

	7.4 Sharing memory
	7.5 Disk Cache
	7.5.1 Page Cache

	8 Hardware Support
	8.1 Physical v Virtual Mode
	8.1.1 Issues with segmentation

	8.2 The TLB
	8.2.1 Page Faults
	8.2.1.1 Finding the page table

	8.2.2 Other page related faults

	8.3 TLB Management
	8.3.1 Flushing the TLB
	8.3.2 Hardware v Software loaded TLB

	9 Linux Specifics
	9.1 Address Space Layout
	9.2 Three Level Page Table

	10 Hardware support for virtual memory
	10.1 x86-64
	10.2 Itanium
	10.2.1 Address spaces
	10.2.1.1 Protection Keys

	10.2.2 Itanium Hardware Page-Table Walker
	10.2.2.1 Virtual Linear Page-Table
	10.2.2.2 Virtual Hash Table

	Chapter 7. The Toolchain
	1 Compiled v Interpreted Programs
	1.1 Compiled Programs
	1.2 Interpreted programs
	1.2.1 Virtual Machines

	2 Building an executable
	3 Compiling
	3.1 The process of compiling
	3.1.1 C code

	3.2 Syntax
	3.3 Assembly Generation
	3.3.1 Alignment
	3.3.1.1 Structure Padding
	3.3.1.2 Cache line alignment
	3.3.1.3 Space - Speed Trade off
	3.3.1.4 Making Assumptions
	3.3.1.5 C Idioms with alignment

	3.4 Optimisation
	3.4.1 General Optimising
	3.4.2 Unrolling loops
	3.4.3 Inlining functions
	3.4.4 Branch Prediction

	4 Assembler
	5 Linker
	5.1 Symbols
	5.1.1 Symbols
	5.1.2 Symbol Visibility

	5.2 The linking process

	6 A practical example
	6.1 Compiling
	6.2 Assembly
	6.3 Linking
	6.4 The Executable

	Chapter 8. Behind the process
	1 Review of executable files
	2 Representing executable files
	2.1 Three Standard Sections
	2.2 Binary Format
	2.3 Binary Format History
	2.3.1 a.out
	2.3.2 COFF

	3 ELF
	3.1 ELF File Header
	3.2 Symbols and Relocations
	3.3 Sections and Segments
	3.3.1 Segments
	3.3.2 Sections
	3.3.3 Sections and Segments together

	4 ELF Executables
	5 Libraries
	5.1 Static Libraries
	5.1.1 Inside static libraries
	5.1.2 Static Linking Drawbacks

	5.2 Shared Libraries

	6 Extending ELF concepts
	6.1 Debugging
	6.1.1 Symbols and Debugging Information
	6.1.2 Inside coredumps

	6.2 Custom sections
	6.3 Linker Scripts

	7 ABIs
	7.1 Byte Order
	7.2 Calling Conventions
	7.2.1 Passing parameters
	7.2.2 Function Descriptors

	8 Starting a process
	8.1 Kernel communication to programs
	8.1.1 Kernel Library

	8.2 Starting the program

	Chapter 9. Dynamic Linking
	1 Code Sharing
	1.1 Dynamic Library Details
	1.2 Including libraries in an executable
	1.2.1 Compilation
	1.2.2 Linking

	2 The Dynamic Linker
	2.1 Relocations
	2.1.1 Relocations in action

	2.2 Position Independence

	3 Global Offset Tables
	3.1 The Global Offset Table
	3.1.1 The GOT in action

	4 Libraries
	4.1 The Procedure Lookup Table
	4.1.1 The PLT in action
	4.1.2 Summary

	5 Working with libraries and the linker
	5.1 Library versions
	5.1.1 sonames
	5.1.1.1 How the dynamic linker looks up libraries

	5.2 Finding symbols
	5.2.1 Dynamic Symbol Table
	5.2.2 Symbol Binding
	5.2.2.1 Overriding symbols
	5.2.2.1.1 Weak symbols over time
	5.2.2.2 Specifying binding order
	5.2.2.3 Symbol Versioning

	Glossary

